3.352 \(\int \frac{1}{\sqrt{a+\frac{b}{c+d x^2}}} \, dx\)

Optimal. Leaf size=286 \[ \frac{c^{3/2} \left (a c+a d x^2+b\right ) F\left (\tan ^{-1}\left (\frac{\sqrt{d} x}{\sqrt{c}}\right )|\frac{b}{b+a c}\right )}{\sqrt{d} (a c+b) \left (c+d x^2\right ) \sqrt{\frac{a c+a d x^2+b}{c+d x^2}} \sqrt{\frac{c \left (a c+a d x^2+b\right )}{(a c+b) \left (c+d x^2\right )}}}+\frac{x \left (a c+a d x^2+b\right )}{a \left (c+d x^2\right ) \sqrt{\frac{a c+a d x^2+b}{c+d x^2}}}-\frac{\sqrt{c} \left (a c+a d x^2+b\right ) E\left (\tan ^{-1}\left (\frac{\sqrt{d} x}{\sqrt{c}}\right )|\frac{b}{b+a c}\right )}{a \sqrt{d} \left (c+d x^2\right ) \sqrt{\frac{a c+a d x^2+b}{c+d x^2}} \sqrt{\frac{c \left (a c+a d x^2+b\right )}{(a c+b) \left (c+d x^2\right )}}} \]

[Out]

(x*(b + a*c + a*d*x^2))/(a*(c + d*x^2)*Sqrt[(b + a*c + a*d*x^2)/(c + d*x^2)]) - (Sqrt[c]*(b + a*c + a*d*x^2)*E
llipticE[ArcTan[(Sqrt[d]*x)/Sqrt[c]], b/(b + a*c)])/(a*Sqrt[d]*(c + d*x^2)*Sqrt[(b + a*c + a*d*x^2)/(c + d*x^2
)]*Sqrt[(c*(b + a*c + a*d*x^2))/((b + a*c)*(c + d*x^2))]) + (c^(3/2)*(b + a*c + a*d*x^2)*EllipticF[ArcTan[(Sqr
t[d]*x)/Sqrt[c]], b/(b + a*c)])/((b + a*c)*Sqrt[d]*(c + d*x^2)*Sqrt[(b + a*c + a*d*x^2)/(c + d*x^2)]*Sqrt[(c*(
b + a*c + a*d*x^2))/((b + a*c)*(c + d*x^2))])

________________________________________________________________________________________

Rubi [A]  time = 0.208576, antiderivative size = 319, normalized size of antiderivative = 1.12, number of steps used = 6, number of rules used = 6, integrand size = 17, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.353, Rules used = {6722, 1974, 422, 418, 492, 411} \[ \frac{c^{3/2} \sqrt{a c+a d x^2+b} \sqrt{a \left (c+d x^2\right )+b} F\left (\tan ^{-1}\left (\frac{\sqrt{d} x}{\sqrt{c}}\right )|\frac{b}{b+a c}\right )}{\sqrt{d} (a c+b) \left (c+d x^2\right ) \sqrt{\frac{c \left (a c+a d x^2+b\right )}{(a c+b) \left (c+d x^2\right )}} \sqrt{a+\frac{b}{c+d x^2}}}+\frac{x \sqrt{a c+a d x^2+b} \sqrt{a \left (c+d x^2\right )+b}}{a \left (c+d x^2\right ) \sqrt{a+\frac{b}{c+d x^2}}}-\frac{\sqrt{c} \sqrt{a c+a d x^2+b} \sqrt{a \left (c+d x^2\right )+b} E\left (\tan ^{-1}\left (\frac{\sqrt{d} x}{\sqrt{c}}\right )|\frac{b}{b+a c}\right )}{a \sqrt{d} \left (c+d x^2\right ) \sqrt{\frac{c \left (a c+a d x^2+b\right )}{(a c+b) \left (c+d x^2\right )}} \sqrt{a+\frac{b}{c+d x^2}}} \]

Antiderivative was successfully verified.

[In]

Int[1/Sqrt[a + b/(c + d*x^2)],x]

[Out]

(x*Sqrt[b + a*c + a*d*x^2]*Sqrt[b + a*(c + d*x^2)])/(a*(c + d*x^2)*Sqrt[a + b/(c + d*x^2)]) - (Sqrt[c]*Sqrt[b
+ a*c + a*d*x^2]*Sqrt[b + a*(c + d*x^2)]*EllipticE[ArcTan[(Sqrt[d]*x)/Sqrt[c]], b/(b + a*c)])/(a*Sqrt[d]*(c +
d*x^2)*Sqrt[(c*(b + a*c + a*d*x^2))/((b + a*c)*(c + d*x^2))]*Sqrt[a + b/(c + d*x^2)]) + (c^(3/2)*Sqrt[b + a*c
+ a*d*x^2]*Sqrt[b + a*(c + d*x^2)]*EllipticF[ArcTan[(Sqrt[d]*x)/Sqrt[c]], b/(b + a*c)])/((b + a*c)*Sqrt[d]*(c
+ d*x^2)*Sqrt[(c*(b + a*c + a*d*x^2))/((b + a*c)*(c + d*x^2))]*Sqrt[a + b/(c + d*x^2)])

Rule 6722

Int[(u_.)*((a_.) + (b_.)*(v_)^(n_))^(p_), x_Symbol] :> Dist[(a + b*v^n)^FracPart[p]/(v^(n*FracPart[p])*(b + a/
v^n)^FracPart[p]), Int[u*v^(n*p)*(b + a/v^n)^p, x], x] /; FreeQ[{a, b, p}, x] &&  !IntegerQ[p] && ILtQ[n, 0] &
& BinomialQ[v, x] &&  !LinearQ[v, x]

Rule 1974

Int[(u_)^(p_.)*(v_)^(q_.), x_Symbol] :> Int[ExpandToSum[u, x]^p*ExpandToSum[v, x]^q, x] /; FreeQ[{p, q}, x] &&
 BinomialQ[{u, v}, x] && EqQ[BinomialDegree[u, x] - BinomialDegree[v, x], 0] &&  !BinomialMatchQ[{u, v}, x]

Rule 422

Int[Sqrt[(a_) + (b_.)*(x_)^2]/Sqrt[(c_) + (d_.)*(x_)^2], x_Symbol] :> Dist[a, Int[1/(Sqrt[a + b*x^2]*Sqrt[c +
d*x^2]), x], x] + Dist[b, Int[x^2/(Sqrt[a + b*x^2]*Sqrt[c + d*x^2]), x], x] /; FreeQ[{a, b, c, d}, x] && PosQ[
d/c] && PosQ[b/a]

Rule 418

Int[1/(Sqrt[(a_) + (b_.)*(x_)^2]*Sqrt[(c_) + (d_.)*(x_)^2]), x_Symbol] :> Simp[(Sqrt[a + b*x^2]*EllipticF[ArcT
an[Rt[d/c, 2]*x], 1 - (b*c)/(a*d)])/(a*Rt[d/c, 2]*Sqrt[c + d*x^2]*Sqrt[(c*(a + b*x^2))/(a*(c + d*x^2))]), x] /
; FreeQ[{a, b, c, d}, x] && PosQ[d/c] && PosQ[b/a] &&  !SimplerSqrtQ[b/a, d/c]

Rule 492

Int[(x_)^2/(Sqrt[(a_) + (b_.)*(x_)^2]*Sqrt[(c_) + (d_.)*(x_)^2]), x_Symbol] :> Simp[(x*Sqrt[a + b*x^2])/(b*Sqr
t[c + d*x^2]), x] - Dist[c/b, Int[Sqrt[a + b*x^2]/(c + d*x^2)^(3/2), x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[b
*c - a*d, 0] && PosQ[b/a] && PosQ[d/c] &&  !SimplerSqrtQ[b/a, d/c]

Rule 411

Int[Sqrt[(a_) + (b_.)*(x_)^2]/((c_) + (d_.)*(x_)^2)^(3/2), x_Symbol] :> Simp[(Sqrt[a + b*x^2]*EllipticE[ArcTan
[Rt[d/c, 2]*x], 1 - (b*c)/(a*d)])/(c*Rt[d/c, 2]*Sqrt[c + d*x^2]*Sqrt[(c*(a + b*x^2))/(a*(c + d*x^2))]), x] /;
FreeQ[{a, b, c, d}, x] && PosQ[b/a] && PosQ[d/c]

Rubi steps

\begin{align*} \int \frac{1}{\sqrt{a+\frac{b}{c+d x^2}}} \, dx &=\frac{\sqrt{b+a \left (c+d x^2\right )} \int \frac{\sqrt{c+d x^2}}{\sqrt{b+a \left (c+d x^2\right )}} \, dx}{\sqrt{c+d x^2} \sqrt{a+\frac{b}{c+d x^2}}}\\ &=\frac{\sqrt{b+a \left (c+d x^2\right )} \int \frac{\sqrt{c+d x^2}}{\sqrt{b+a c+a d x^2}} \, dx}{\sqrt{c+d x^2} \sqrt{a+\frac{b}{c+d x^2}}}\\ &=\frac{\left (c \sqrt{b+a \left (c+d x^2\right )}\right ) \int \frac{1}{\sqrt{c+d x^2} \sqrt{b+a c+a d x^2}} \, dx}{\sqrt{c+d x^2} \sqrt{a+\frac{b}{c+d x^2}}}+\frac{\left (d \sqrt{b+a \left (c+d x^2\right )}\right ) \int \frac{x^2}{\sqrt{c+d x^2} \sqrt{b+a c+a d x^2}} \, dx}{\sqrt{c+d x^2} \sqrt{a+\frac{b}{c+d x^2}}}\\ &=\frac{x \sqrt{b+a c+a d x^2} \sqrt{b+a \left (c+d x^2\right )}}{a \left (c+d x^2\right ) \sqrt{a+\frac{b}{c+d x^2}}}+\frac{c^{3/2} \sqrt{b+a c+a d x^2} \sqrt{b+a \left (c+d x^2\right )} F\left (\tan ^{-1}\left (\frac{\sqrt{d} x}{\sqrt{c}}\right )|\frac{b}{b+a c}\right )}{(b+a c) \sqrt{d} \left (c+d x^2\right ) \sqrt{\frac{c \left (b+a c+a d x^2\right )}{(b+a c) \left (c+d x^2\right )}} \sqrt{a+\frac{b}{c+d x^2}}}-\frac{\left (c \sqrt{b+a \left (c+d x^2\right )}\right ) \int \frac{\sqrt{b+a c+a d x^2}}{\left (c+d x^2\right )^{3/2}} \, dx}{a \sqrt{c+d x^2} \sqrt{a+\frac{b}{c+d x^2}}}\\ &=\frac{x \sqrt{b+a c+a d x^2} \sqrt{b+a \left (c+d x^2\right )}}{a \left (c+d x^2\right ) \sqrt{a+\frac{b}{c+d x^2}}}-\frac{\sqrt{c} \sqrt{b+a c+a d x^2} \sqrt{b+a \left (c+d x^2\right )} E\left (\tan ^{-1}\left (\frac{\sqrt{d} x}{\sqrt{c}}\right )|\frac{b}{b+a c}\right )}{a \sqrt{d} \left (c+d x^2\right ) \sqrt{\frac{c \left (b+a c+a d x^2\right )}{(b+a c) \left (c+d x^2\right )}} \sqrt{a+\frac{b}{c+d x^2}}}+\frac{c^{3/2} \sqrt{b+a c+a d x^2} \sqrt{b+a \left (c+d x^2\right )} F\left (\tan ^{-1}\left (\frac{\sqrt{d} x}{\sqrt{c}}\right )|\frac{b}{b+a c}\right )}{(b+a c) \sqrt{d} \left (c+d x^2\right ) \sqrt{\frac{c \left (b+a c+a d x^2\right )}{(b+a c) \left (c+d x^2\right )}} \sqrt{a+\frac{b}{c+d x^2}}}\\ \end{align*}

Mathematica [A]  time = 0.111982, size = 107, normalized size = 0.37 \[ \frac{\sqrt{\frac{a c+a d x^2+b}{a c+b}} E\left (\sin ^{-1}\left (\sqrt{-\frac{a d}{b+a c}} x\right )|\frac{b}{a c}+1\right )}{\sqrt{\frac{d x^2}{c}+1} \sqrt{-\frac{a d}{a c+b}} \sqrt{\frac{a c+a d x^2+b}{c+d x^2}}} \]

Antiderivative was successfully verified.

[In]

Integrate[1/Sqrt[a + b/(c + d*x^2)],x]

[Out]

(Sqrt[(b + a*c + a*d*x^2)/(b + a*c)]*EllipticE[ArcSin[Sqrt[-((a*d)/(b + a*c))]*x], 1 + b/(a*c)])/(Sqrt[-((a*d)
/(b + a*c))]*Sqrt[(b + a*c + a*d*x^2)/(c + d*x^2)]*Sqrt[1 + (d*x^2)/c])

________________________________________________________________________________________

Maple [A]  time = 0.01, size = 164, normalized size = 0.6 \begin{align*}{c \left ( d{x}^{2}+c \right ){\it EllipticE} \left ( x\sqrt{-{\frac{ad}{ac+b}}},\sqrt{{\frac{ac+b}{ac}}} \right ) \sqrt{{\frac{d{x}^{2}+c}{c}}}\sqrt{{\frac{ad{x}^{2}+ac+b}{ac+b}}}\sqrt{{\frac{ad{x}^{2}+ac+b}{d{x}^{2}+c}}}{\frac{1}{\sqrt{a{d}^{2}{x}^{4}+2\,acd{x}^{2}+bd{x}^{2}+{c}^{2}a+bc}}}{\frac{1}{\sqrt{-{\frac{ad}{ac+b}}}}}{\frac{1}{\sqrt{ \left ( d{x}^{2}+c \right ) \left ( ad{x}^{2}+ac+b \right ) }}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(a+b/(d*x^2+c))^(1/2),x)

[Out]

EllipticE(x*(-a*d/(a*c+b))^(1/2),((a*c+b)/a/c)^(1/2))*((d*x^2+c)/c)^(1/2)*((a*d*x^2+a*c+b)/(a*c+b))^(1/2)*c*(d
*x^2+c)*((a*d*x^2+a*c+b)/(d*x^2+c))^(1/2)/(a*d^2*x^4+2*a*c*d*x^2+b*d*x^2+a*c^2+b*c)^(1/2)/(-a*d/(a*c+b))^(1/2)
/((d*x^2+c)*(a*d*x^2+a*c+b))^(1/2)

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{1}{\sqrt{a + \frac{b}{d x^{2} + c}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a+b/(d*x^2+c))^(1/2),x, algorithm="maxima")

[Out]

integrate(1/sqrt(a + b/(d*x^2 + c)), x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (\frac{{\left (d x^{2} + c\right )} \sqrt{\frac{a d x^{2} + a c + b}{d x^{2} + c}}}{a d x^{2} + a c + b}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a+b/(d*x^2+c))^(1/2),x, algorithm="fricas")

[Out]

integral((d*x^2 + c)*sqrt((a*d*x^2 + a*c + b)/(d*x^2 + c))/(a*d*x^2 + a*c + b), x)

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{1}{\sqrt{a + \frac{b}{c + d x^{2}}}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a+b/(d*x**2+c))**(1/2),x)

[Out]

Integral(1/sqrt(a + b/(c + d*x**2)), x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{1}{\sqrt{a + \frac{b}{d x^{2} + c}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a+b/(d*x^2+c))^(1/2),x, algorithm="giac")

[Out]

integrate(1/sqrt(a + b/(d*x^2 + c)), x)