3.351 \(\int \frac{x^2}{\sqrt{a+\frac{b}{c+d x^2}}} \, dx\)

Optimal. Leaf size=354 \[ \frac{\sqrt{c} (a c+2 b) \left (a c+a d x^2+b\right ) E\left (\tan ^{-1}\left (\frac{\sqrt{d} x}{\sqrt{c}}\right )|\frac{b}{b+a c}\right )}{3 a^2 d^{3/2} \left (c+d x^2\right ) \sqrt{\frac{a c+a d x^2+b}{c+d x^2}} \sqrt{\frac{c \left (a c+a d x^2+b\right )}{(a c+b) \left (c+d x^2\right )}}}-\frac{x (a c+2 b) \left (a c+a d x^2+b\right )}{3 a^2 d \left (c+d x^2\right ) \sqrt{\frac{a c+a d x^2+b}{c+d x^2}}}-\frac{c^{3/2} \left (a c+a d x^2+b\right ) F\left (\tan ^{-1}\left (\frac{\sqrt{d} x}{\sqrt{c}}\right )|\frac{b}{b+a c}\right )}{3 a d^{3/2} \left (c+d x^2\right ) \sqrt{\frac{a c+a d x^2+b}{c+d x^2}} \sqrt{\frac{c \left (a c+a d x^2+b\right )}{(a c+b) \left (c+d x^2\right )}}}+\frac{x \left (a c+a d x^2+b\right )}{3 a d \sqrt{\frac{a c+a d x^2+b}{c+d x^2}}} \]

[Out]

(x*(b + a*c + a*d*x^2))/(3*a*d*Sqrt[(b + a*c + a*d*x^2)/(c + d*x^2)]) - ((2*b + a*c)*x*(b + a*c + a*d*x^2))/(3
*a^2*d*(c + d*x^2)*Sqrt[(b + a*c + a*d*x^2)/(c + d*x^2)]) + (Sqrt[c]*(2*b + a*c)*(b + a*c + a*d*x^2)*EllipticE
[ArcTan[(Sqrt[d]*x)/Sqrt[c]], b/(b + a*c)])/(3*a^2*d^(3/2)*(c + d*x^2)*Sqrt[(b + a*c + a*d*x^2)/(c + d*x^2)]*S
qrt[(c*(b + a*c + a*d*x^2))/((b + a*c)*(c + d*x^2))]) - (c^(3/2)*(b + a*c + a*d*x^2)*EllipticF[ArcTan[(Sqrt[d]
*x)/Sqrt[c]], b/(b + a*c)])/(3*a*d^(3/2)*(c + d*x^2)*Sqrt[(b + a*c + a*d*x^2)/(c + d*x^2)]*Sqrt[(c*(b + a*c +
a*d*x^2))/((b + a*c)*(c + d*x^2))])

________________________________________________________________________________________

Rubi [A]  time = 0.520623, antiderivative size = 398, normalized size of antiderivative = 1.12, number of steps used = 7, number of rules used = 7, integrand size = 21, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.333, Rules used = {6722, 1975, 478, 531, 418, 492, 411} \[ \frac{\sqrt{c} (a c+2 b) \sqrt{a c+a d x^2+b} \sqrt{a \left (c+d x^2\right )+b} E\left (\tan ^{-1}\left (\frac{\sqrt{d} x}{\sqrt{c}}\right )|\frac{b}{b+a c}\right )}{3 a^2 d^{3/2} \left (c+d x^2\right ) \sqrt{\frac{c \left (a c+a d x^2+b\right )}{(a c+b) \left (c+d x^2\right )}} \sqrt{a+\frac{b}{c+d x^2}}}-\frac{x (a c+2 b) \sqrt{a c+a d x^2+b} \sqrt{a \left (c+d x^2\right )+b}}{3 a^2 d \left (c+d x^2\right ) \sqrt{a+\frac{b}{c+d x^2}}}-\frac{c^{3/2} \sqrt{a c+a d x^2+b} \sqrt{a \left (c+d x^2\right )+b} F\left (\tan ^{-1}\left (\frac{\sqrt{d} x}{\sqrt{c}}\right )|\frac{b}{b+a c}\right )}{3 a d^{3/2} \left (c+d x^2\right ) \sqrt{\frac{c \left (a c+a d x^2+b\right )}{(a c+b) \left (c+d x^2\right )}} \sqrt{a+\frac{b}{c+d x^2}}}+\frac{x \sqrt{a c+a d x^2+b} \sqrt{a \left (c+d x^2\right )+b}}{3 a d \sqrt{a+\frac{b}{c+d x^2}}} \]

Antiderivative was successfully verified.

[In]

Int[x^2/Sqrt[a + b/(c + d*x^2)],x]

[Out]

(x*Sqrt[b + a*c + a*d*x^2]*Sqrt[b + a*(c + d*x^2)])/(3*a*d*Sqrt[a + b/(c + d*x^2)]) - ((2*b + a*c)*x*Sqrt[b +
a*c + a*d*x^2]*Sqrt[b + a*(c + d*x^2)])/(3*a^2*d*(c + d*x^2)*Sqrt[a + b/(c + d*x^2)]) + (Sqrt[c]*(2*b + a*c)*S
qrt[b + a*c + a*d*x^2]*Sqrt[b + a*(c + d*x^2)]*EllipticE[ArcTan[(Sqrt[d]*x)/Sqrt[c]], b/(b + a*c)])/(3*a^2*d^(
3/2)*(c + d*x^2)*Sqrt[(c*(b + a*c + a*d*x^2))/((b + a*c)*(c + d*x^2))]*Sqrt[a + b/(c + d*x^2)]) - (c^(3/2)*Sqr
t[b + a*c + a*d*x^2]*Sqrt[b + a*(c + d*x^2)]*EllipticF[ArcTan[(Sqrt[d]*x)/Sqrt[c]], b/(b + a*c)])/(3*a*d^(3/2)
*(c + d*x^2)*Sqrt[(c*(b + a*c + a*d*x^2))/((b + a*c)*(c + d*x^2))]*Sqrt[a + b/(c + d*x^2)])

Rule 6722

Int[(u_.)*((a_.) + (b_.)*(v_)^(n_))^(p_), x_Symbol] :> Dist[(a + b*v^n)^FracPart[p]/(v^(n*FracPart[p])*(b + a/
v^n)^FracPart[p]), Int[u*v^(n*p)*(b + a/v^n)^p, x], x] /; FreeQ[{a, b, p}, x] &&  !IntegerQ[p] && ILtQ[n, 0] &
& BinomialQ[v, x] &&  !LinearQ[v, x]

Rule 1975

Int[(u_)^(p_.)*(v_)^(q_.)*((e_.)*(x_))^(m_.), x_Symbol] :> Int[(e*x)^m*ExpandToSum[u, x]^p*ExpandToSum[v, x]^q
, x] /; FreeQ[{e, m, p, q}, x] && BinomialQ[{u, v}, x] && EqQ[BinomialDegree[u, x] - BinomialDegree[v, x], 0]
&&  !BinomialMatchQ[{u, v}, x]

Rule 478

Int[((e_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_))^(q_), x_Symbol] :> Simp[(e^(n -
1)*(e*x)^(m - n + 1)*(a + b*x^n)^(p + 1)*(c + d*x^n)^q)/(b*(m + n*(p + q) + 1)), x] - Dist[e^n/(b*(m + n*(p +
q) + 1)), Int[(e*x)^(m - n)*(a + b*x^n)^p*(c + d*x^n)^(q - 1)*Simp[a*c*(m - n + 1) + (a*d*(m - n + 1) - n*q*(b
*c - a*d))*x^n, x], x], x] /; FreeQ[{a, b, c, d, e, p}, x] && NeQ[b*c - a*d, 0] && IGtQ[n, 0] && GtQ[q, 0] &&
GtQ[m - n + 1, 0] && IntBinomialQ[a, b, c, d, e, m, n, p, q, x]

Rule 531

Int[((a_) + (b_.)*(x_)^(n_))^(p_.)*((c_) + (d_.)*(x_)^(n_))^(q_.)*((e_) + (f_.)*(x_)^(n_)), x_Symbol] :> Dist[
e, Int[(a + b*x^n)^p*(c + d*x^n)^q, x], x] + Dist[f, Int[x^n*(a + b*x^n)^p*(c + d*x^n)^q, x], x] /; FreeQ[{a,
b, c, d, e, f, n, p, q}, x]

Rule 418

Int[1/(Sqrt[(a_) + (b_.)*(x_)^2]*Sqrt[(c_) + (d_.)*(x_)^2]), x_Symbol] :> Simp[(Sqrt[a + b*x^2]*EllipticF[ArcT
an[Rt[d/c, 2]*x], 1 - (b*c)/(a*d)])/(a*Rt[d/c, 2]*Sqrt[c + d*x^2]*Sqrt[(c*(a + b*x^2))/(a*(c + d*x^2))]), x] /
; FreeQ[{a, b, c, d}, x] && PosQ[d/c] && PosQ[b/a] &&  !SimplerSqrtQ[b/a, d/c]

Rule 492

Int[(x_)^2/(Sqrt[(a_) + (b_.)*(x_)^2]*Sqrt[(c_) + (d_.)*(x_)^2]), x_Symbol] :> Simp[(x*Sqrt[a + b*x^2])/(b*Sqr
t[c + d*x^2]), x] - Dist[c/b, Int[Sqrt[a + b*x^2]/(c + d*x^2)^(3/2), x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[b
*c - a*d, 0] && PosQ[b/a] && PosQ[d/c] &&  !SimplerSqrtQ[b/a, d/c]

Rule 411

Int[Sqrt[(a_) + (b_.)*(x_)^2]/((c_) + (d_.)*(x_)^2)^(3/2), x_Symbol] :> Simp[(Sqrt[a + b*x^2]*EllipticE[ArcTan
[Rt[d/c, 2]*x], 1 - (b*c)/(a*d)])/(c*Rt[d/c, 2]*Sqrt[c + d*x^2]*Sqrt[(c*(a + b*x^2))/(a*(c + d*x^2))]), x] /;
FreeQ[{a, b, c, d}, x] && PosQ[b/a] && PosQ[d/c]

Rubi steps

\begin{align*} \int \frac{x^2}{\sqrt{a+\frac{b}{c+d x^2}}} \, dx &=\frac{\sqrt{b+a \left (c+d x^2\right )} \int \frac{x^2 \sqrt{c+d x^2}}{\sqrt{b+a \left (c+d x^2\right )}} \, dx}{\sqrt{c+d x^2} \sqrt{a+\frac{b}{c+d x^2}}}\\ &=\frac{\sqrt{b+a \left (c+d x^2\right )} \int \frac{x^2 \sqrt{c+d x^2}}{\sqrt{b+a c+a d x^2}} \, dx}{\sqrt{c+d x^2} \sqrt{a+\frac{b}{c+d x^2}}}\\ &=\frac{x \sqrt{b+a c+a d x^2} \sqrt{b+a \left (c+d x^2\right )}}{3 a d \sqrt{a+\frac{b}{c+d x^2}}}-\frac{\sqrt{b+a \left (c+d x^2\right )} \int \frac{c (b+a c)+(2 b+a c) d x^2}{\sqrt{c+d x^2} \sqrt{b+a c+a d x^2}} \, dx}{3 a d \sqrt{c+d x^2} \sqrt{a+\frac{b}{c+d x^2}}}\\ &=\frac{x \sqrt{b+a c+a d x^2} \sqrt{b+a \left (c+d x^2\right )}}{3 a d \sqrt{a+\frac{b}{c+d x^2}}}-\frac{\left ((2 b+a c) \sqrt{b+a \left (c+d x^2\right )}\right ) \int \frac{x^2}{\sqrt{c+d x^2} \sqrt{b+a c+a d x^2}} \, dx}{3 a \sqrt{c+d x^2} \sqrt{a+\frac{b}{c+d x^2}}}-\frac{\left (c (b+a c) \sqrt{b+a \left (c+d x^2\right )}\right ) \int \frac{1}{\sqrt{c+d x^2} \sqrt{b+a c+a d x^2}} \, dx}{3 a d \sqrt{c+d x^2} \sqrt{a+\frac{b}{c+d x^2}}}\\ &=\frac{x \sqrt{b+a c+a d x^2} \sqrt{b+a \left (c+d x^2\right )}}{3 a d \sqrt{a+\frac{b}{c+d x^2}}}-\frac{(2 b+a c) x \sqrt{b+a c+a d x^2} \sqrt{b+a \left (c+d x^2\right )}}{3 a^2 d \left (c+d x^2\right ) \sqrt{a+\frac{b}{c+d x^2}}}-\frac{c^{3/2} \sqrt{b+a c+a d x^2} \sqrt{b+a \left (c+d x^2\right )} F\left (\tan ^{-1}\left (\frac{\sqrt{d} x}{\sqrt{c}}\right )|\frac{b}{b+a c}\right )}{3 a d^{3/2} \left (c+d x^2\right ) \sqrt{\frac{c \left (b+a c+a d x^2\right )}{(b+a c) \left (c+d x^2\right )}} \sqrt{a+\frac{b}{c+d x^2}}}+\frac{\left (c (2 b+a c) \sqrt{b+a \left (c+d x^2\right )}\right ) \int \frac{\sqrt{b+a c+a d x^2}}{\left (c+d x^2\right )^{3/2}} \, dx}{3 a^2 d \sqrt{c+d x^2} \sqrt{a+\frac{b}{c+d x^2}}}\\ &=\frac{x \sqrt{b+a c+a d x^2} \sqrt{b+a \left (c+d x^2\right )}}{3 a d \sqrt{a+\frac{b}{c+d x^2}}}-\frac{(2 b+a c) x \sqrt{b+a c+a d x^2} \sqrt{b+a \left (c+d x^2\right )}}{3 a^2 d \left (c+d x^2\right ) \sqrt{a+\frac{b}{c+d x^2}}}+\frac{\sqrt{c} (2 b+a c) \sqrt{b+a c+a d x^2} \sqrt{b+a \left (c+d x^2\right )} E\left (\tan ^{-1}\left (\frac{\sqrt{d} x}{\sqrt{c}}\right )|\frac{b}{b+a c}\right )}{3 a^2 d^{3/2} \left (c+d x^2\right ) \sqrt{\frac{c \left (b+a c+a d x^2\right )}{(b+a c) \left (c+d x^2\right )}} \sqrt{a+\frac{b}{c+d x^2}}}-\frac{c^{3/2} \sqrt{b+a c+a d x^2} \sqrt{b+a \left (c+d x^2\right )} F\left (\tan ^{-1}\left (\frac{\sqrt{d} x}{\sqrt{c}}\right )|\frac{b}{b+a c}\right )}{3 a d^{3/2} \left (c+d x^2\right ) \sqrt{\frac{c \left (b+a c+a d x^2\right )}{(b+a c) \left (c+d x^2\right )}} \sqrt{a+\frac{b}{c+d x^2}}}\\ \end{align*}

Mathematica [C]  time = 0.556936, size = 253, normalized size = 0.71 \[ \frac{\sqrt{\frac{a c+a d x^2+b}{c+d x^2}} \left (x \left (c+d x^2\right ) \sqrt{\frac{a d}{a c+b}} \left (a c+a d x^2+b\right )-i b c \sqrt{\frac{d x^2}{c}+1} \sqrt{\frac{a c+a d x^2+b}{a c+b}} F\left (i \sinh ^{-1}\left (\sqrt{\frac{a d}{b+a c}} x\right )|\frac{b}{a c}+1\right )+i c (a c+2 b) \sqrt{\frac{d x^2}{c}+1} \sqrt{\frac{a c+a d x^2+b}{a c+b}} E\left (i \sinh ^{-1}\left (\sqrt{\frac{a d}{b+a c}} x\right )|\frac{b}{a c}+1\right )\right )}{3 a d \sqrt{\frac{a d}{a c+b}} \left (a \left (c+d x^2\right )+b\right )} \]

Antiderivative was successfully verified.

[In]

Integrate[x^2/Sqrt[a + b/(c + d*x^2)],x]

[Out]

(Sqrt[(b + a*c + a*d*x^2)/(c + d*x^2)]*(Sqrt[(a*d)/(b + a*c)]*x*(c + d*x^2)*(b + a*c + a*d*x^2) + I*c*(2*b + a
*c)*Sqrt[(b + a*c + a*d*x^2)/(b + a*c)]*Sqrt[1 + (d*x^2)/c]*EllipticE[I*ArcSinh[Sqrt[(a*d)/(b + a*c)]*x], 1 +
b/(a*c)] - I*b*c*Sqrt[(b + a*c + a*d*x^2)/(b + a*c)]*Sqrt[1 + (d*x^2)/c]*EllipticF[I*ArcSinh[Sqrt[(a*d)/(b + a
*c)]*x], 1 + b/(a*c)]))/(3*a*d*Sqrt[(a*d)/(b + a*c)]*(b + a*(c + d*x^2)))

________________________________________________________________________________________

Maple [A]  time = 0.014, size = 409, normalized size = 1.2 \begin{align*}{\frac{d{x}^{2}+c}{3\,ad} \left ( \sqrt{-{\frac{ad}{ac+b}}}{x}^{5}a{d}^{2}+2\,\sqrt{-{\frac{ad}{ac+b}}}{x}^{3}acd+\sqrt{-{\frac{ad}{ac+b}}}{x}^{3}bd-\sqrt{{\frac{ad{x}^{2}+ac+b}{ac+b}}}\sqrt{{\frac{d{x}^{2}+c}{c}}}{\it EllipticE} \left ( x\sqrt{-{\frac{ad}{ac+b}}},\sqrt{{\frac{ac+b}{ac}}} \right ) a{c}^{2}+\sqrt{-{\frac{ad}{ac+b}}}xa{c}^{2}+\sqrt{{\frac{ad{x}^{2}+ac+b}{ac+b}}}\sqrt{{\frac{d{x}^{2}+c}{c}}}{\it EllipticF} \left ( x\sqrt{-{\frac{ad}{ac+b}}},\sqrt{{\frac{ac+b}{ac}}} \right ) bc-2\,\sqrt{{\frac{ad{x}^{2}+ac+b}{ac+b}}}\sqrt{{\frac{d{x}^{2}+c}{c}}}{\it EllipticE} \left ( x\sqrt{-{\frac{ad}{ac+b}}},\sqrt{{\frac{ac+b}{ac}}} \right ) bc+\sqrt{-{\frac{ad}{ac+b}}}xbc \right ) \sqrt{{\frac{ad{x}^{2}+ac+b}{d{x}^{2}+c}}}{\frac{1}{\sqrt{a{d}^{2}{x}^{4}+2\,acd{x}^{2}+bd{x}^{2}+{c}^{2}a+bc}}}{\frac{1}{\sqrt{-{\frac{ad}{ac+b}}}}}{\frac{1}{\sqrt{ \left ( d{x}^{2}+c \right ) \left ( ad{x}^{2}+ac+b \right ) }}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^2/(a+b/(d*x^2+c))^(1/2),x)

[Out]

1/3*((-a*d/(a*c+b))^(1/2)*x^5*a*d^2+2*(-a*d/(a*c+b))^(1/2)*x^3*a*c*d+(-a*d/(a*c+b))^(1/2)*x^3*b*d-((a*d*x^2+a*
c+b)/(a*c+b))^(1/2)*((d*x^2+c)/c)^(1/2)*EllipticE(x*(-a*d/(a*c+b))^(1/2),((a*c+b)/a/c)^(1/2))*a*c^2+(-a*d/(a*c
+b))^(1/2)*x*a*c^2+((a*d*x^2+a*c+b)/(a*c+b))^(1/2)*((d*x^2+c)/c)^(1/2)*EllipticF(x*(-a*d/(a*c+b))^(1/2),((a*c+
b)/a/c)^(1/2))*b*c-2*((a*d*x^2+a*c+b)/(a*c+b))^(1/2)*((d*x^2+c)/c)^(1/2)*EllipticE(x*(-a*d/(a*c+b))^(1/2),((a*
c+b)/a/c)^(1/2))*b*c+(-a*d/(a*c+b))^(1/2)*x*b*c)*(d*x^2+c)*((a*d*x^2+a*c+b)/(d*x^2+c))^(1/2)/d/(a*d^2*x^4+2*a*
c*d*x^2+b*d*x^2+a*c^2+b*c)^(1/2)/(-a*d/(a*c+b))^(1/2)/a/((d*x^2+c)*(a*d*x^2+a*c+b))^(1/2)

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{x^{2}}{\sqrt{a + \frac{b}{d x^{2} + c}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^2/(a+b/(d*x^2+c))^(1/2),x, algorithm="maxima")

[Out]

integrate(x^2/sqrt(a + b/(d*x^2 + c)), x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (\frac{{\left (d x^{4} + c x^{2}\right )} \sqrt{\frac{a d x^{2} + a c + b}{d x^{2} + c}}}{a d x^{2} + a c + b}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^2/(a+b/(d*x^2+c))^(1/2),x, algorithm="fricas")

[Out]

integral((d*x^4 + c*x^2)*sqrt((a*d*x^2 + a*c + b)/(d*x^2 + c))/(a*d*x^2 + a*c + b), x)

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{x^{2}}{\sqrt{\frac{a c + a d x^{2} + b}{c + d x^{2}}}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x**2/(a+b/(d*x**2+c))**(1/2),x)

[Out]

Integral(x**2/sqrt((a*c + a*d*x**2 + b)/(c + d*x**2)), x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{x^{2}}{\sqrt{a + \frac{b}{d x^{2} + c}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^2/(a+b/(d*x^2+c))^(1/2),x, algorithm="giac")

[Out]

integrate(x^2/sqrt(a + b/(d*x^2 + c)), x)