3.299 \(\int \frac{1}{x \sqrt{\frac{e (a+b x^2)}{c+d x^2}}} \, dx\)

Optimal. Leaf size=112 \[ \frac{\sqrt{d} \tanh ^{-1}\left (\frac{\sqrt{d} \sqrt{\frac{e \left (a+b x^2\right )}{c+d x^2}}}{\sqrt{b} \sqrt{e}}\right )}{\sqrt{b} \sqrt{e}}-\frac{\sqrt{c} \tanh ^{-1}\left (\frac{\sqrt{c} \sqrt{\frac{e \left (a+b x^2\right )}{c+d x^2}}}{\sqrt{a} \sqrt{e}}\right )}{\sqrt{a} \sqrt{e}} \]

[Out]

-((Sqrt[c]*ArcTanh[(Sqrt[c]*Sqrt[(e*(a + b*x^2))/(c + d*x^2)])/(Sqrt[a]*Sqrt[e])])/(Sqrt[a]*Sqrt[e])) + (Sqrt[
d]*ArcTanh[(Sqrt[d]*Sqrt[(e*(a + b*x^2))/(c + d*x^2)])/(Sqrt[b]*Sqrt[e])])/(Sqrt[b]*Sqrt[e])

________________________________________________________________________________________

Rubi [A]  time = 0.10582, antiderivative size = 112, normalized size of antiderivative = 1., number of steps used = 4, number of rules used = 3, integrand size = 26, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.115, Rules used = {1960, 391, 208} \[ \frac{\sqrt{d} \tanh ^{-1}\left (\frac{\sqrt{d} \sqrt{\frac{e \left (a+b x^2\right )}{c+d x^2}}}{\sqrt{b} \sqrt{e}}\right )}{\sqrt{b} \sqrt{e}}-\frac{\sqrt{c} \tanh ^{-1}\left (\frac{\sqrt{c} \sqrt{\frac{e \left (a+b x^2\right )}{c+d x^2}}}{\sqrt{a} \sqrt{e}}\right )}{\sqrt{a} \sqrt{e}} \]

Antiderivative was successfully verified.

[In]

Int[1/(x*Sqrt[(e*(a + b*x^2))/(c + d*x^2)]),x]

[Out]

-((Sqrt[c]*ArcTanh[(Sqrt[c]*Sqrt[(e*(a + b*x^2))/(c + d*x^2)])/(Sqrt[a]*Sqrt[e])])/(Sqrt[a]*Sqrt[e])) + (Sqrt[
d]*ArcTanh[(Sqrt[d]*Sqrt[(e*(a + b*x^2))/(c + d*x^2)])/(Sqrt[b]*Sqrt[e])])/(Sqrt[b]*Sqrt[e])

Rule 1960

Int[(x_)^(m_.)*(((e_.)*((a_.) + (b_.)*(x_)^(n_.)))/((c_) + (d_.)*(x_)^(n_.)))^(p_), x_Symbol] :> With[{q = Den
ominator[p]}, Dist[(q*e*(b*c - a*d))/n, Subst[Int[(x^(q*(p + 1) - 1)*(-(a*e) + c*x^q)^(Simplify[(m + 1)/n] - 1
))/(b*e - d*x^q)^(Simplify[(m + 1)/n] + 1), x], x, ((e*(a + b*x^n))/(c + d*x^n))^(1/q)], x]] /; FreeQ[{a, b, c
, d, e, m, n}, x] && FractionQ[p] && IntegerQ[Simplify[(m + 1)/n]]

Rule 391

Int[1/(((a_) + (b_.)*(x_)^(n_))*((c_) + (d_.)*(x_)^(n_))), x_Symbol] :> Dist[b/(b*c - a*d), Int[1/(a + b*x^n),
 x], x] - Dist[d/(b*c - a*d), Int[1/(c + d*x^n), x], x] /; FreeQ[{a, b, c, d, n}, x] && NeQ[b*c - a*d, 0]

Rule 208

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-(a/b), 2]*ArcTanh[x/Rt[-(a/b), 2]])/a, x] /; FreeQ[{a,
b}, x] && NegQ[a/b]

Rubi steps

\begin{align*} \int \frac{1}{x \sqrt{\frac{e \left (a+b x^2\right )}{c+d x^2}}} \, dx &=((b c-a d) e) \operatorname{Subst}\left (\int \frac{1}{\left (-a e+c x^2\right ) \left (b e-d x^2\right )} \, dx,x,\sqrt{\frac{e \left (a+b x^2\right )}{c+d x^2}}\right )\\ &=c \operatorname{Subst}\left (\int \frac{1}{-a e+c x^2} \, dx,x,\sqrt{\frac{e \left (a+b x^2\right )}{c+d x^2}}\right )+d \operatorname{Subst}\left (\int \frac{1}{b e-d x^2} \, dx,x,\sqrt{\frac{e \left (a+b x^2\right )}{c+d x^2}}\right )\\ &=-\frac{\sqrt{c} \tanh ^{-1}\left (\frac{\sqrt{c} \sqrt{\frac{e \left (a+b x^2\right )}{c+d x^2}}}{\sqrt{a} \sqrt{e}}\right )}{\sqrt{a} \sqrt{e}}+\frac{\sqrt{d} \tanh ^{-1}\left (\frac{\sqrt{d} \sqrt{\frac{e \left (a+b x^2\right )}{c+d x^2}}}{\sqrt{b} \sqrt{e}}\right )}{\sqrt{b} \sqrt{e}}\\ \end{align*}

Mathematica [A]  time = 0.227685, size = 190, normalized size = 1.7 \[ \frac{\sqrt{a+b x^2} \left (\sqrt{a} \sqrt{d} \sqrt{c+d x^2} \sqrt{b c-a d} \sqrt{\frac{b \left (c+d x^2\right )}{b c-a d}} \sinh ^{-1}\left (\frac{\sqrt{d} \sqrt{a+b x^2}}{\sqrt{b c-a d}}\right )-b \sqrt{c} \left (c+d x^2\right ) \tanh ^{-1}\left (\frac{\sqrt{c} \sqrt{a+b x^2}}{\sqrt{a} \sqrt{c+d x^2}}\right )\right )}{\sqrt{a} b \left (c+d x^2\right )^{3/2} \sqrt{\frac{e \left (a+b x^2\right )}{c+d x^2}}} \]

Antiderivative was successfully verified.

[In]

Integrate[1/(x*Sqrt[(e*(a + b*x^2))/(c + d*x^2)]),x]

[Out]

(Sqrt[a + b*x^2]*(Sqrt[a]*Sqrt[d]*Sqrt[b*c - a*d]*Sqrt[c + d*x^2]*Sqrt[(b*(c + d*x^2))/(b*c - a*d)]*ArcSinh[(S
qrt[d]*Sqrt[a + b*x^2])/Sqrt[b*c - a*d]] - b*Sqrt[c]*(c + d*x^2)*ArcTanh[(Sqrt[c]*Sqrt[a + b*x^2])/(Sqrt[a]*Sq
rt[c + d*x^2])]))/(Sqrt[a]*b*Sqrt[(e*(a + b*x^2))/(c + d*x^2)]*(c + d*x^2)^(3/2))

________________________________________________________________________________________

Maple [B]  time = 0.011, size = 179, normalized size = 1.6 \begin{align*}{\frac{b{x}^{2}+a}{2} \left ( d\ln \left ({\frac{1}{2} \left ( 2\,bd{x}^{2}+2\,\sqrt{bd{x}^{4}+ad{x}^{2}+bc{x}^{2}+ac}\sqrt{bd}+ad+bc \right ){\frac{1}{\sqrt{bd}}}} \right ) \sqrt{ac}-c\ln \left ({\frac{1}{{x}^{2}} \left ( ad{x}^{2}+bc{x}^{2}+2\,\sqrt{ac}\sqrt{bd{x}^{4}+ad{x}^{2}+bc{x}^{2}+ac}+2\,ac \right ) } \right ) \sqrt{bd} \right ){\frac{1}{\sqrt{{\frac{e \left ( b{x}^{2}+a \right ) }{d{x}^{2}+c}}}}}{\frac{1}{\sqrt{ \left ( d{x}^{2}+c \right ) \left ( b{x}^{2}+a \right ) }}}{\frac{1}{\sqrt{bd}}}{\frac{1}{\sqrt{ac}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/x/(e*(b*x^2+a)/(d*x^2+c))^(1/2),x)

[Out]

1/2*(b*x^2+a)*(d*ln(1/2*(2*b*d*x^2+2*(b*d*x^4+a*d*x^2+b*c*x^2+a*c)^(1/2)*(b*d)^(1/2)+a*d+b*c)/(b*d)^(1/2))*(a*
c)^(1/2)-c*ln((a*d*x^2+b*c*x^2+2*(a*c)^(1/2)*(b*d*x^4+a*d*x^2+b*c*x^2+a*c)^(1/2)+2*a*c)/x^2)*(b*d)^(1/2))/(e*(
b*x^2+a)/(d*x^2+c))^(1/2)/((d*x^2+c)*(b*x^2+a))^(1/2)/(b*d)^(1/2)/(a*c)^(1/2)

________________________________________________________________________________________

Maxima [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: ValueError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x/(e*(b*x^2+a)/(d*x^2+c))^(1/2),x, algorithm="maxima")

[Out]

Exception raised: ValueError

________________________________________________________________________________________

Fricas [A]  time = 3.0263, size = 1859, normalized size = 16.6 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x/(e*(b*x^2+a)/(d*x^2+c))^(1/2),x, algorithm="fricas")

[Out]

[1/4*sqrt(d/(b*e))*log(8*b^2*d^2*x^4 + b^2*c^2 + 6*a*b*c*d + a^2*d^2 + 8*(b^2*c*d + a*b*d^2)*x^2 + 4*(2*b^2*d^
2*x^4 + b^2*c^2 + a*b*c*d + (3*b^2*c*d + a*b*d^2)*x^2)*sqrt((b*e*x^2 + a*e)/(d*x^2 + c))*sqrt(d/(b*e))) + 1/4*
sqrt(c/(a*e))*log(((b^2*c^2 + 6*a*b*c*d + a^2*d^2)*x^4 + 8*a^2*c^2 + 8*(a*b*c^2 + a^2*c*d)*x^2 - 4*((a*b*c*d +
 a^2*d^2)*x^4 + 2*a^2*c^2 + (a*b*c^2 + 3*a^2*c*d)*x^2)*sqrt((b*e*x^2 + a*e)/(d*x^2 + c))*sqrt(c/(a*e)))/x^4),
-1/2*sqrt(-d/(b*e))*arctan(1/2*(2*b*d*x^2 + b*c + a*d)*sqrt((b*e*x^2 + a*e)/(d*x^2 + c))*sqrt(-d/(b*e))/(b*d*x
^2 + a*d)) + 1/4*sqrt(c/(a*e))*log(((b^2*c^2 + 6*a*b*c*d + a^2*d^2)*x^4 + 8*a^2*c^2 + 8*(a*b*c^2 + a^2*c*d)*x^
2 - 4*((a*b*c*d + a^2*d^2)*x^4 + 2*a^2*c^2 + (a*b*c^2 + 3*a^2*c*d)*x^2)*sqrt((b*e*x^2 + a*e)/(d*x^2 + c))*sqrt
(c/(a*e)))/x^4), 1/2*sqrt(-c/(a*e))*arctan(1/2*((b*c + a*d)*x^2 + 2*a*c)*sqrt((b*e*x^2 + a*e)/(d*x^2 + c))*sqr
t(-c/(a*e))/(b*c*x^2 + a*c)) + 1/4*sqrt(d/(b*e))*log(8*b^2*d^2*x^4 + b^2*c^2 + 6*a*b*c*d + a^2*d^2 + 8*(b^2*c*
d + a*b*d^2)*x^2 + 4*(2*b^2*d^2*x^4 + b^2*c^2 + a*b*c*d + (3*b^2*c*d + a*b*d^2)*x^2)*sqrt((b*e*x^2 + a*e)/(d*x
^2 + c))*sqrt(d/(b*e))), 1/2*sqrt(-c/(a*e))*arctan(1/2*((b*c + a*d)*x^2 + 2*a*c)*sqrt((b*e*x^2 + a*e)/(d*x^2 +
 c))*sqrt(-c/(a*e))/(b*c*x^2 + a*c)) - 1/2*sqrt(-d/(b*e))*arctan(1/2*(2*b*d*x^2 + b*c + a*d)*sqrt((b*e*x^2 + a
*e)/(d*x^2 + c))*sqrt(-d/(b*e))/(b*d*x^2 + a*d))]

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x/(e*(b*x**2+a)/(d*x**2+c))**(1/2),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{1}{\sqrt{\frac{{\left (b x^{2} + a\right )} e}{d x^{2} + c}} x}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x/(e*(b*x^2+a)/(d*x^2+c))^(1/2),x, algorithm="giac")

[Out]

integrate(1/(sqrt((b*x^2 + a)*e/(d*x^2 + c))*x), x)