3.298 \(\int \frac{x}{\sqrt{\frac{e (a+b x^2)}{c+d x^2}}} \, dx\)

Optimal. Leaf size=106 \[ \frac{(b c-a d) \tanh ^{-1}\left (\frac{\sqrt{d} \sqrt{\frac{e \left (a+b x^2\right )}{c+d x^2}}}{\sqrt{b} \sqrt{e}}\right )}{2 b^{3/2} \sqrt{d} \sqrt{e}}+\frac{\left (c+d x^2\right ) \sqrt{\frac{e \left (a+b x^2\right )}{c+d x^2}}}{2 b e} \]

[Out]

(Sqrt[(e*(a + b*x^2))/(c + d*x^2)]*(c + d*x^2))/(2*b*e) + ((b*c - a*d)*ArcTanh[(Sqrt[d]*Sqrt[(e*(a + b*x^2))/(
c + d*x^2)])/(Sqrt[b]*Sqrt[e])])/(2*b^(3/2)*Sqrt[d]*Sqrt[e])

________________________________________________________________________________________

Rubi [A]  time = 0.0682991, antiderivative size = 106, normalized size of antiderivative = 1., number of steps used = 3, number of rules used = 3, integrand size = 24, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.125, Rules used = {1960, 199, 208} \[ \frac{(b c-a d) \tanh ^{-1}\left (\frac{\sqrt{d} \sqrt{\frac{e \left (a+b x^2\right )}{c+d x^2}}}{\sqrt{b} \sqrt{e}}\right )}{2 b^{3/2} \sqrt{d} \sqrt{e}}+\frac{\left (c+d x^2\right ) \sqrt{\frac{e \left (a+b x^2\right )}{c+d x^2}}}{2 b e} \]

Antiderivative was successfully verified.

[In]

Int[x/Sqrt[(e*(a + b*x^2))/(c + d*x^2)],x]

[Out]

(Sqrt[(e*(a + b*x^2))/(c + d*x^2)]*(c + d*x^2))/(2*b*e) + ((b*c - a*d)*ArcTanh[(Sqrt[d]*Sqrt[(e*(a + b*x^2))/(
c + d*x^2)])/(Sqrt[b]*Sqrt[e])])/(2*b^(3/2)*Sqrt[d]*Sqrt[e])

Rule 1960

Int[(x_)^(m_.)*(((e_.)*((a_.) + (b_.)*(x_)^(n_.)))/((c_) + (d_.)*(x_)^(n_.)))^(p_), x_Symbol] :> With[{q = Den
ominator[p]}, Dist[(q*e*(b*c - a*d))/n, Subst[Int[(x^(q*(p + 1) - 1)*(-(a*e) + c*x^q)^(Simplify[(m + 1)/n] - 1
))/(b*e - d*x^q)^(Simplify[(m + 1)/n] + 1), x], x, ((e*(a + b*x^n))/(c + d*x^n))^(1/q)], x]] /; FreeQ[{a, b, c
, d, e, m, n}, x] && FractionQ[p] && IntegerQ[Simplify[(m + 1)/n]]

Rule 199

Int[((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> -Simp[(x*(a + b*x^n)^(p + 1))/(a*n*(p + 1)), x] + Dist[(n*(p +
 1) + 1)/(a*n*(p + 1)), Int[(a + b*x^n)^(p + 1), x], x] /; FreeQ[{a, b}, x] && IGtQ[n, 0] && LtQ[p, -1] && (In
tegerQ[2*p] || (n == 2 && IntegerQ[4*p]) || (n == 2 && IntegerQ[3*p]) || Denominator[p + 1/n] < Denominator[p]
)

Rule 208

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-(a/b), 2]*ArcTanh[x/Rt[-(a/b), 2]])/a, x] /; FreeQ[{a,
b}, x] && NegQ[a/b]

Rubi steps

\begin{align*} \int \frac{x}{\sqrt{\frac{e \left (a+b x^2\right )}{c+d x^2}}} \, dx &=((b c-a d) e) \operatorname{Subst}\left (\int \frac{1}{\left (b e-d x^2\right )^2} \, dx,x,\sqrt{\frac{e \left (a+b x^2\right )}{c+d x^2}}\right )\\ &=\frac{\sqrt{\frac{e \left (a+b x^2\right )}{c+d x^2}} \left (c+d x^2\right )}{2 b e}+\frac{(b c-a d) \operatorname{Subst}\left (\int \frac{1}{b e-d x^2} \, dx,x,\sqrt{\frac{e \left (a+b x^2\right )}{c+d x^2}}\right )}{2 b}\\ &=\frac{\sqrt{\frac{e \left (a+b x^2\right )}{c+d x^2}} \left (c+d x^2\right )}{2 b e}+\frac{(b c-a d) \tanh ^{-1}\left (\frac{\sqrt{d} \sqrt{\frac{e \left (a+b x^2\right )}{c+d x^2}}}{\sqrt{b} \sqrt{e}}\right )}{2 b^{3/2} \sqrt{d} \sqrt{e}}\\ \end{align*}

Mathematica [A]  time = 0.133623, size = 152, normalized size = 1.43 \[ \frac{\sqrt{a+b x^2} \left (\sqrt{d} \sqrt{a+b x^2} \sqrt{\frac{b \left (c+d x^2\right )}{b c-a d}}+\sqrt{b c-a d} \sinh ^{-1}\left (\frac{\sqrt{d} \sqrt{a+b x^2}}{\sqrt{b c-a d}}\right )\right )}{2 b \sqrt{d} \sqrt{\frac{b \left (c+d x^2\right )}{b c-a d}} \sqrt{\frac{e \left (a+b x^2\right )}{c+d x^2}}} \]

Antiderivative was successfully verified.

[In]

Integrate[x/Sqrt[(e*(a + b*x^2))/(c + d*x^2)],x]

[Out]

(Sqrt[a + b*x^2]*(Sqrt[d]*Sqrt[a + b*x^2]*Sqrt[(b*(c + d*x^2))/(b*c - a*d)] + Sqrt[b*c - a*d]*ArcSinh[(Sqrt[d]
*Sqrt[a + b*x^2])/Sqrt[b*c - a*d]]))/(2*b*Sqrt[d]*Sqrt[(e*(a + b*x^2))/(c + d*x^2)]*Sqrt[(b*(c + d*x^2))/(b*c
- a*d)])

________________________________________________________________________________________

Maple [B]  time = 0.007, size = 200, normalized size = 1.9 \begin{align*}{\frac{b{x}^{2}+a}{4\,b} \left ( -a\ln \left ({\frac{1}{2} \left ( 2\,bd{x}^{2}+2\,\sqrt{bd{x}^{4}+ad{x}^{2}+bc{x}^{2}+ac}\sqrt{bd}+ad+bc \right ){\frac{1}{\sqrt{bd}}}} \right ) d+b\ln \left ({\frac{1}{2} \left ( 2\,bd{x}^{2}+2\,\sqrt{bd{x}^{4}+ad{x}^{2}+bc{x}^{2}+ac}\sqrt{bd}+ad+bc \right ){\frac{1}{\sqrt{bd}}}} \right ) c+2\,\sqrt{bd{x}^{4}+ad{x}^{2}+bc{x}^{2}+ac}\sqrt{bd} \right ){\frac{1}{\sqrt{{\frac{e \left ( b{x}^{2}+a \right ) }{d{x}^{2}+c}}}}}{\frac{1}{\sqrt{ \left ( d{x}^{2}+c \right ) \left ( b{x}^{2}+a \right ) }}}{\frac{1}{\sqrt{bd}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x/(e*(b*x^2+a)/(d*x^2+c))^(1/2),x)

[Out]

1/4*(b*x^2+a)*(-a*ln(1/2*(2*b*d*x^2+2*(b*d*x^4+a*d*x^2+b*c*x^2+a*c)^(1/2)*(b*d)^(1/2)+a*d+b*c)/(b*d)^(1/2))*d+
b*ln(1/2*(2*b*d*x^2+2*(b*d*x^4+a*d*x^2+b*c*x^2+a*c)^(1/2)*(b*d)^(1/2)+a*d+b*c)/(b*d)^(1/2))*c+2*(b*d*x^4+a*d*x
^2+b*c*x^2+a*c)^(1/2)*(b*d)^(1/2))/(e*(b*x^2+a)/(d*x^2+c))^(1/2)/((d*x^2+c)*(b*x^2+a))^(1/2)/b/(b*d)^(1/2)

________________________________________________________________________________________

Maxima [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: ValueError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x/(e*(b*x^2+a)/(d*x^2+c))^(1/2),x, algorithm="maxima")

[Out]

Exception raised: ValueError

________________________________________________________________________________________

Fricas [A]  time = 1.59683, size = 679, normalized size = 6.41 \begin{align*} \left [-\frac{\sqrt{b d e}{\left (b c - a d\right )} \log \left (8 \, b^{2} d^{2} e x^{4} + 8 \,{\left (b^{2} c d + a b d^{2}\right )} e x^{2} +{\left (b^{2} c^{2} + 6 \, a b c d + a^{2} d^{2}\right )} e - 4 \,{\left (2 \, b d^{2} x^{4} + b c^{2} + a c d +{\left (3 \, b c d + a d^{2}\right )} x^{2}\right )} \sqrt{b d e} \sqrt{\frac{b e x^{2} + a e}{d x^{2} + c}}\right ) - 4 \,{\left (b d^{2} x^{2} + b c d\right )} \sqrt{\frac{b e x^{2} + a e}{d x^{2} + c}}}{8 \, b^{2} d e}, -\frac{\sqrt{-b d e}{\left (b c - a d\right )} \arctan \left (\frac{{\left (2 \, b d x^{2} + b c + a d\right )} \sqrt{-b d e} \sqrt{\frac{b e x^{2} + a e}{d x^{2} + c}}}{2 \,{\left (b^{2} d e x^{2} + a b d e\right )}}\right ) - 2 \,{\left (b d^{2} x^{2} + b c d\right )} \sqrt{\frac{b e x^{2} + a e}{d x^{2} + c}}}{4 \, b^{2} d e}\right ] \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x/(e*(b*x^2+a)/(d*x^2+c))^(1/2),x, algorithm="fricas")

[Out]

[-1/8*(sqrt(b*d*e)*(b*c - a*d)*log(8*b^2*d^2*e*x^4 + 8*(b^2*c*d + a*b*d^2)*e*x^2 + (b^2*c^2 + 6*a*b*c*d + a^2*
d^2)*e - 4*(2*b*d^2*x^4 + b*c^2 + a*c*d + (3*b*c*d + a*d^2)*x^2)*sqrt(b*d*e)*sqrt((b*e*x^2 + a*e)/(d*x^2 + c))
) - 4*(b*d^2*x^2 + b*c*d)*sqrt((b*e*x^2 + a*e)/(d*x^2 + c)))/(b^2*d*e), -1/4*(sqrt(-b*d*e)*(b*c - a*d)*arctan(
1/2*(2*b*d*x^2 + b*c + a*d)*sqrt(-b*d*e)*sqrt((b*e*x^2 + a*e)/(d*x^2 + c))/(b^2*d*e*x^2 + a*b*d*e)) - 2*(b*d^2
*x^2 + b*c*d)*sqrt((b*e*x^2 + a*e)/(d*x^2 + c)))/(b^2*d*e)]

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x/(e*(b*x**2+a)/(d*x**2+c))**(1/2),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: TypeError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x/(e*(b*x^2+a)/(d*x^2+c))^(1/2),x, algorithm="giac")

[Out]

Exception raised: TypeError