3.284 \(\int x^2 (\frac{e (a+b x^2)}{c+d x^2})^{3/2} \, dx\)

Optimal. Leaf size=310 \[ \frac{4 b e x \left (c+d x^2\right ) \sqrt{\frac{e \left (a+b x^2\right )}{c+d x^2}}}{3 d^2}-\frac{e x (8 b c-7 a d) \sqrt{\frac{e \left (a+b x^2\right )}{c+d x^2}}}{3 d^2}-\frac{\sqrt{c} e (4 b c-3 a d) \sqrt{\frac{e \left (a+b x^2\right )}{c+d x^2}} F\left (\tan ^{-1}\left (\frac{\sqrt{d} x}{\sqrt{c}}\right )|1-\frac{b c}{a d}\right )}{3 d^{5/2} \sqrt{\frac{c \left (a+b x^2\right )}{a \left (c+d x^2\right )}}}+\frac{\sqrt{c} e (8 b c-7 a d) \sqrt{\frac{e \left (a+b x^2\right )}{c+d x^2}} E\left (\tan ^{-1}\left (\frac{\sqrt{d} x}{\sqrt{c}}\right )|1-\frac{b c}{a d}\right )}{3 d^{5/2} \sqrt{\frac{c \left (a+b x^2\right )}{a \left (c+d x^2\right )}}}-\frac{e x \left (a+b x^2\right ) \sqrt{\frac{e \left (a+b x^2\right )}{c+d x^2}}}{d} \]

[Out]

-((8*b*c - 7*a*d)*e*x*Sqrt[(e*(a + b*x^2))/(c + d*x^2)])/(3*d^2) - (e*x*(a + b*x^2)*Sqrt[(e*(a + b*x^2))/(c +
d*x^2)])/d + (4*b*e*x*Sqrt[(e*(a + b*x^2))/(c + d*x^2)]*(c + d*x^2))/(3*d^2) + (Sqrt[c]*(8*b*c - 7*a*d)*e*Sqrt
[(e*(a + b*x^2))/(c + d*x^2)]*EllipticE[ArcTan[(Sqrt[d]*x)/Sqrt[c]], 1 - (b*c)/(a*d)])/(3*d^(5/2)*Sqrt[(c*(a +
 b*x^2))/(a*(c + d*x^2))]) - (Sqrt[c]*(4*b*c - 3*a*d)*e*Sqrt[(e*(a + b*x^2))/(c + d*x^2)]*EllipticF[ArcTan[(Sq
rt[d]*x)/Sqrt[c]], 1 - (b*c)/(a*d)])/(3*d^(5/2)*Sqrt[(c*(a + b*x^2))/(a*(c + d*x^2))])

________________________________________________________________________________________

Rubi [A]  time = 0.438167, antiderivative size = 310, normalized size of antiderivative = 1., number of steps used = 7, number of rules used = 7, integrand size = 26, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.269, Rules used = {6719, 467, 528, 531, 418, 492, 411} \[ \frac{4 b e x \left (c+d x^2\right ) \sqrt{\frac{e \left (a+b x^2\right )}{c+d x^2}}}{3 d^2}-\frac{e x (8 b c-7 a d) \sqrt{\frac{e \left (a+b x^2\right )}{c+d x^2}}}{3 d^2}-\frac{\sqrt{c} e (4 b c-3 a d) \sqrt{\frac{e \left (a+b x^2\right )}{c+d x^2}} F\left (\tan ^{-1}\left (\frac{\sqrt{d} x}{\sqrt{c}}\right )|1-\frac{b c}{a d}\right )}{3 d^{5/2} \sqrt{\frac{c \left (a+b x^2\right )}{a \left (c+d x^2\right )}}}+\frac{\sqrt{c} e (8 b c-7 a d) \sqrt{\frac{e \left (a+b x^2\right )}{c+d x^2}} E\left (\tan ^{-1}\left (\frac{\sqrt{d} x}{\sqrt{c}}\right )|1-\frac{b c}{a d}\right )}{3 d^{5/2} \sqrt{\frac{c \left (a+b x^2\right )}{a \left (c+d x^2\right )}}}-\frac{e x \left (a+b x^2\right ) \sqrt{\frac{e \left (a+b x^2\right )}{c+d x^2}}}{d} \]

Antiderivative was successfully verified.

[In]

Int[x^2*((e*(a + b*x^2))/(c + d*x^2))^(3/2),x]

[Out]

-((8*b*c - 7*a*d)*e*x*Sqrt[(e*(a + b*x^2))/(c + d*x^2)])/(3*d^2) - (e*x*(a + b*x^2)*Sqrt[(e*(a + b*x^2))/(c +
d*x^2)])/d + (4*b*e*x*Sqrt[(e*(a + b*x^2))/(c + d*x^2)]*(c + d*x^2))/(3*d^2) + (Sqrt[c]*(8*b*c - 7*a*d)*e*Sqrt
[(e*(a + b*x^2))/(c + d*x^2)]*EllipticE[ArcTan[(Sqrt[d]*x)/Sqrt[c]], 1 - (b*c)/(a*d)])/(3*d^(5/2)*Sqrt[(c*(a +
 b*x^2))/(a*(c + d*x^2))]) - (Sqrt[c]*(4*b*c - 3*a*d)*e*Sqrt[(e*(a + b*x^2))/(c + d*x^2)]*EllipticF[ArcTan[(Sq
rt[d]*x)/Sqrt[c]], 1 - (b*c)/(a*d)])/(3*d^(5/2)*Sqrt[(c*(a + b*x^2))/(a*(c + d*x^2))])

Rule 6719

Int[(u_.)*((a_.)*(v_)^(m_.)*(w_)^(n_.))^(p_), x_Symbol] :> Dist[(a^IntPart[p]*(a*v^m*w^n)^FracPart[p])/(v^(m*F
racPart[p])*w^(n*FracPart[p])), Int[u*v^(m*p)*w^(n*p), x], x] /; FreeQ[{a, m, n, p}, x] &&  !IntegerQ[p] &&  !
FreeQ[v, x] &&  !FreeQ[w, x]

Rule 467

Int[((e_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_))^(q_), x_Symbol] :> Simp[(e^(n -
1)*(e*x)^(m - n + 1)*(a + b*x^n)^(p + 1)*(c + d*x^n)^q)/(b*n*(p + 1)), x] - Dist[e^n/(b*n*(p + 1)), Int[(e*x)^
(m - n)*(a + b*x^n)^(p + 1)*(c + d*x^n)^(q - 1)*Simp[c*(m - n + 1) + d*(m + n*(q - 1) + 1)*x^n, x], x], x] /;
FreeQ[{a, b, c, d, e}, x] && NeQ[b*c - a*d, 0] && IGtQ[n, 0] && LtQ[p, -1] && GtQ[q, 0] && GtQ[m - n + 1, 0] &
& IntBinomialQ[a, b, c, d, e, m, n, p, q, x]

Rule 528

Int[((a_) + (b_.)*(x_)^(n_))^(p_.)*((c_) + (d_.)*(x_)^(n_))^(q_.)*((e_) + (f_.)*(x_)^(n_)), x_Symbol] :> Simp[
(f*x*(a + b*x^n)^(p + 1)*(c + d*x^n)^q)/(b*(n*(p + q + 1) + 1)), x] + Dist[1/(b*(n*(p + q + 1) + 1)), Int[(a +
 b*x^n)^p*(c + d*x^n)^(q - 1)*Simp[c*(b*e - a*f + b*e*n*(p + q + 1)) + (d*(b*e - a*f) + f*n*q*(b*c - a*d) + b*
d*e*n*(p + q + 1))*x^n, x], x], x] /; FreeQ[{a, b, c, d, e, f, n, p}, x] && GtQ[q, 0] && NeQ[n*(p + q + 1) + 1
, 0]

Rule 531

Int[((a_) + (b_.)*(x_)^(n_))^(p_.)*((c_) + (d_.)*(x_)^(n_))^(q_.)*((e_) + (f_.)*(x_)^(n_)), x_Symbol] :> Dist[
e, Int[(a + b*x^n)^p*(c + d*x^n)^q, x], x] + Dist[f, Int[x^n*(a + b*x^n)^p*(c + d*x^n)^q, x], x] /; FreeQ[{a,
b, c, d, e, f, n, p, q}, x]

Rule 418

Int[1/(Sqrt[(a_) + (b_.)*(x_)^2]*Sqrt[(c_) + (d_.)*(x_)^2]), x_Symbol] :> Simp[(Sqrt[a + b*x^2]*EllipticF[ArcT
an[Rt[d/c, 2]*x], 1 - (b*c)/(a*d)])/(a*Rt[d/c, 2]*Sqrt[c + d*x^2]*Sqrt[(c*(a + b*x^2))/(a*(c + d*x^2))]), x] /
; FreeQ[{a, b, c, d}, x] && PosQ[d/c] && PosQ[b/a] &&  !SimplerSqrtQ[b/a, d/c]

Rule 492

Int[(x_)^2/(Sqrt[(a_) + (b_.)*(x_)^2]*Sqrt[(c_) + (d_.)*(x_)^2]), x_Symbol] :> Simp[(x*Sqrt[a + b*x^2])/(b*Sqr
t[c + d*x^2]), x] - Dist[c/b, Int[Sqrt[a + b*x^2]/(c + d*x^2)^(3/2), x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[b
*c - a*d, 0] && PosQ[b/a] && PosQ[d/c] &&  !SimplerSqrtQ[b/a, d/c]

Rule 411

Int[Sqrt[(a_) + (b_.)*(x_)^2]/((c_) + (d_.)*(x_)^2)^(3/2), x_Symbol] :> Simp[(Sqrt[a + b*x^2]*EllipticE[ArcTan
[Rt[d/c, 2]*x], 1 - (b*c)/(a*d)])/(c*Rt[d/c, 2]*Sqrt[c + d*x^2]*Sqrt[(c*(a + b*x^2))/(a*(c + d*x^2))]), x] /;
FreeQ[{a, b, c, d}, x] && PosQ[b/a] && PosQ[d/c]

Rubi steps

\begin{align*} \int x^2 \left (\frac{e \left (a+b x^2\right )}{c+d x^2}\right )^{3/2} \, dx &=\frac{\left (e \sqrt{\frac{e \left (a+b x^2\right )}{c+d x^2}} \sqrt{c+d x^2}\right ) \int \frac{x^2 \left (a+b x^2\right )^{3/2}}{\left (c+d x^2\right )^{3/2}} \, dx}{\sqrt{a+b x^2}}\\ &=-\frac{e x \left (a+b x^2\right ) \sqrt{\frac{e \left (a+b x^2\right )}{c+d x^2}}}{d}+\frac{\left (e \sqrt{\frac{e \left (a+b x^2\right )}{c+d x^2}} \sqrt{c+d x^2}\right ) \int \frac{\sqrt{a+b x^2} \left (a+4 b x^2\right )}{\sqrt{c+d x^2}} \, dx}{d \sqrt{a+b x^2}}\\ &=-\frac{e x \left (a+b x^2\right ) \sqrt{\frac{e \left (a+b x^2\right )}{c+d x^2}}}{d}+\frac{4 b e x \sqrt{\frac{e \left (a+b x^2\right )}{c+d x^2}} \left (c+d x^2\right )}{3 d^2}+\frac{\left (e \sqrt{\frac{e \left (a+b x^2\right )}{c+d x^2}} \sqrt{c+d x^2}\right ) \int \frac{-a (4 b c-3 a d)-b (8 b c-7 a d) x^2}{\sqrt{a+b x^2} \sqrt{c+d x^2}} \, dx}{3 d^2 \sqrt{a+b x^2}}\\ &=-\frac{e x \left (a+b x^2\right ) \sqrt{\frac{e \left (a+b x^2\right )}{c+d x^2}}}{d}+\frac{4 b e x \sqrt{\frac{e \left (a+b x^2\right )}{c+d x^2}} \left (c+d x^2\right )}{3 d^2}-\frac{\left (b (8 b c-7 a d) e \sqrt{\frac{e \left (a+b x^2\right )}{c+d x^2}} \sqrt{c+d x^2}\right ) \int \frac{x^2}{\sqrt{a+b x^2} \sqrt{c+d x^2}} \, dx}{3 d^2 \sqrt{a+b x^2}}-\frac{\left (a (4 b c-3 a d) e \sqrt{\frac{e \left (a+b x^2\right )}{c+d x^2}} \sqrt{c+d x^2}\right ) \int \frac{1}{\sqrt{a+b x^2} \sqrt{c+d x^2}} \, dx}{3 d^2 \sqrt{a+b x^2}}\\ &=-\frac{(8 b c-7 a d) e x \sqrt{\frac{e \left (a+b x^2\right )}{c+d x^2}}}{3 d^2}-\frac{e x \left (a+b x^2\right ) \sqrt{\frac{e \left (a+b x^2\right )}{c+d x^2}}}{d}+\frac{4 b e x \sqrt{\frac{e \left (a+b x^2\right )}{c+d x^2}} \left (c+d x^2\right )}{3 d^2}-\frac{\sqrt{c} (4 b c-3 a d) e \sqrt{\frac{e \left (a+b x^2\right )}{c+d x^2}} F\left (\tan ^{-1}\left (\frac{\sqrt{d} x}{\sqrt{c}}\right )|1-\frac{b c}{a d}\right )}{3 d^{5/2} \sqrt{\frac{c \left (a+b x^2\right )}{a \left (c+d x^2\right )}}}+\frac{\left (c (8 b c-7 a d) e \sqrt{\frac{e \left (a+b x^2\right )}{c+d x^2}} \sqrt{c+d x^2}\right ) \int \frac{\sqrt{a+b x^2}}{\left (c+d x^2\right )^{3/2}} \, dx}{3 d^2 \sqrt{a+b x^2}}\\ &=-\frac{(8 b c-7 a d) e x \sqrt{\frac{e \left (a+b x^2\right )}{c+d x^2}}}{3 d^2}-\frac{e x \left (a+b x^2\right ) \sqrt{\frac{e \left (a+b x^2\right )}{c+d x^2}}}{d}+\frac{4 b e x \sqrt{\frac{e \left (a+b x^2\right )}{c+d x^2}} \left (c+d x^2\right )}{3 d^2}+\frac{\sqrt{c} (8 b c-7 a d) e \sqrt{\frac{e \left (a+b x^2\right )}{c+d x^2}} E\left (\tan ^{-1}\left (\frac{\sqrt{d} x}{\sqrt{c}}\right )|1-\frac{b c}{a d}\right )}{3 d^{5/2} \sqrt{\frac{c \left (a+b x^2\right )}{a \left (c+d x^2\right )}}}-\frac{\sqrt{c} (4 b c-3 a d) e \sqrt{\frac{e \left (a+b x^2\right )}{c+d x^2}} F\left (\tan ^{-1}\left (\frac{\sqrt{d} x}{\sqrt{c}}\right )|1-\frac{b c}{a d}\right )}{3 d^{5/2} \sqrt{\frac{c \left (a+b x^2\right )}{a \left (c+d x^2\right )}}}\\ \end{align*}

Mathematica [C]  time = 0.415328, size = 235, normalized size = 0.76 \[ -\frac{e \sqrt{\frac{e \left (a+b x^2\right )}{c+d x^2}} \left (i \sqrt{\frac{b x^2}{a}+1} \sqrt{\frac{d x^2}{c}+1} \left (3 a^2 d^2-11 a b c d+8 b^2 c^2\right ) F\left (i \sinh ^{-1}\left (\sqrt{\frac{b}{a}} x\right )|\frac{a d}{b c}\right )+d x \sqrt{\frac{b}{a}} \left (a+b x^2\right ) \left (3 a d-b \left (4 c+d x^2\right )\right )+i b c \sqrt{\frac{b x^2}{a}+1} \sqrt{\frac{d x^2}{c}+1} (7 a d-8 b c) E\left (i \sinh ^{-1}\left (\sqrt{\frac{b}{a}} x\right )|\frac{a d}{b c}\right )\right )}{3 d^3 \sqrt{\frac{b}{a}} \left (a+b x^2\right )} \]

Antiderivative was successfully verified.

[In]

Integrate[x^2*((e*(a + b*x^2))/(c + d*x^2))^(3/2),x]

[Out]

-(e*Sqrt[(e*(a + b*x^2))/(c + d*x^2)]*(Sqrt[b/a]*d*x*(a + b*x^2)*(3*a*d - b*(4*c + d*x^2)) + I*b*c*(-8*b*c + 7
*a*d)*Sqrt[1 + (b*x^2)/a]*Sqrt[1 + (d*x^2)/c]*EllipticE[I*ArcSinh[Sqrt[b/a]*x], (a*d)/(b*c)] + I*(8*b^2*c^2 -
11*a*b*c*d + 3*a^2*d^2)*Sqrt[1 + (b*x^2)/a]*Sqrt[1 + (d*x^2)/c]*EllipticF[I*ArcSinh[Sqrt[b/a]*x], (a*d)/(b*c)]
))/(3*Sqrt[b/a]*d^3*(a + b*x^2))

________________________________________________________________________________________

Maple [B]  time = 0.014, size = 738, normalized size = 2.4 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^2*(e*(b*x^2+a)/(d*x^2+c))^(3/2),x)

[Out]

-1/3*(e*(b*x^2+a)/(d*x^2+c))^(3/2)*(d*x^2+c)*(-(-b/a)^(1/2)*((d*x^2+c)*(b*x^2+a))^(1/2)*x^5*b^2*d^2+3*(b*d*x^4
+a*d*x^2+b*c*x^2+a*c)^(1/2)*(-b/a)^(1/2)*x^3*a*b*d^2-3*(b*d*x^4+a*d*x^2+b*c*x^2+a*c)^(1/2)*(-b/a)^(1/2)*x^3*b^
2*c*d-(-b/a)^(1/2)*((d*x^2+c)*(b*x^2+a))^(1/2)*x^3*a*b*d^2-(-b/a)^(1/2)*((d*x^2+c)*(b*x^2+a))^(1/2)*x^3*b^2*c*
d-3*((b*x^2+a)/a)^(1/2)*((d*x^2+c)/c)^(1/2)*EllipticF(x*(-b/a)^(1/2),(a*d/b/c)^(1/2))*((d*x^2+c)*(b*x^2+a))^(1
/2)*a^2*d^2+11*((b*x^2+a)/a)^(1/2)*((d*x^2+c)/c)^(1/2)*EllipticF(x*(-b/a)^(1/2),(a*d/b/c)^(1/2))*((d*x^2+c)*(b
*x^2+a))^(1/2)*a*b*c*d-8*((b*x^2+a)/a)^(1/2)*((d*x^2+c)/c)^(1/2)*EllipticF(x*(-b/a)^(1/2),(a*d/b/c)^(1/2))*((d
*x^2+c)*(b*x^2+a))^(1/2)*b^2*c^2-7*((b*x^2+a)/a)^(1/2)*((d*x^2+c)/c)^(1/2)*EllipticE(x*(-b/a)^(1/2),(a*d/b/c)^
(1/2))*((d*x^2+c)*(b*x^2+a))^(1/2)*a*b*c*d+8*((b*x^2+a)/a)^(1/2)*((d*x^2+c)/c)^(1/2)*EllipticE(x*(-b/a)^(1/2),
(a*d/b/c)^(1/2))*((d*x^2+c)*(b*x^2+a))^(1/2)*b^2*c^2+3*(b*d*x^4+a*d*x^2+b*c*x^2+a*c)^(1/2)*(-b/a)^(1/2)*x*a^2*
d^2-3*(b*d*x^4+a*d*x^2+b*c*x^2+a*c)^(1/2)*(-b/a)^(1/2)*x*a*b*c*d-(-b/a)^(1/2)*((d*x^2+c)*(b*x^2+a))^(1/2)*x*a*
b*c*d)/(b*x^2+a)^2/d^3/(-b/a)^(1/2)/(b*d*x^4+a*d*x^2+b*c*x^2+a*c)^(1/2)

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \left (\frac{{\left (b x^{2} + a\right )} e}{d x^{2} + c}\right )^{\frac{3}{2}} x^{2}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^2*(e*(b*x^2+a)/(d*x^2+c))^(3/2),x, algorithm="maxima")

[Out]

integrate(((b*x^2 + a)*e/(d*x^2 + c))^(3/2)*x^2, x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (\frac{{\left (b e x^{4} + a e x^{2}\right )} \sqrt{\frac{b e x^{2} + a e}{d x^{2} + c}}}{d x^{2} + c}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^2*(e*(b*x^2+a)/(d*x^2+c))^(3/2),x, algorithm="fricas")

[Out]

integral((b*e*x^4 + a*e*x^2)*sqrt((b*e*x^2 + a*e)/(d*x^2 + c))/(d*x^2 + c), x)

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x**2*(e*(b*x**2+a)/(d*x**2+c))**(3/2),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \left (\frac{{\left (b x^{2} + a\right )} e}{d x^{2} + c}\right )^{\frac{3}{2}} x^{2}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^2*(e*(b*x^2+a)/(d*x^2+c))^(3/2),x, algorithm="giac")

[Out]

integrate(((b*x^2 + a)*e/(d*x^2 + c))^(3/2)*x^2, x)