3.205 \(\int \frac{2-2 x-x^2}{(2+d+d x+x^2) \sqrt{-1-x^3}} \, dx\)

Optimal. Leaf size=32 \[ \frac{2 \tanh ^{-1}\left (\frac{\sqrt{d+1} (x+1)}{\sqrt{-x^3-1}}\right )}{\sqrt{d+1}} \]

[Out]

(2*ArcTanh[(Sqrt[1 + d]*(1 + x))/Sqrt[-1 - x^3]])/Sqrt[1 + d]

________________________________________________________________________________________

Rubi [A]  time = 0.0926577, antiderivative size = 32, normalized size of antiderivative = 1., number of steps used = 2, number of rules used = 2, integrand size = 33, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.061, Rules used = {2145, 207} \[ \frac{2 \tanh ^{-1}\left (\frac{\sqrt{d+1} (x+1)}{\sqrt{-x^3-1}}\right )}{\sqrt{d+1}} \]

Antiderivative was successfully verified.

[In]

Int[(2 - 2*x - x^2)/((2 + d + d*x + x^2)*Sqrt[-1 - x^3]),x]

[Out]

(2*ArcTanh[(Sqrt[1 + d]*(1 + x))/Sqrt[-1 - x^3]])/Sqrt[1 + d]

Rule 2145

Int[((f_) + (g_.)*(x_) + (h_.)*(x_)^2)/(((c_) + (d_.)*(x_) + (e_.)*(x_)^2)*Sqrt[(a_) + (b_.)*(x_)^3]), x_Symbo
l] :> Dist[-2*g*h, Subst[Int[1/(2*e*h - (b*d*f - 2*a*e*h)*x^2), x], x, (1 + (2*h*x)/g)/Sqrt[a + b*x^3]], x] /;
 FreeQ[{a, b, c, d, e, f, g, h}, x] && NeQ[b*d*f - 2*a*e*h, 0] && EqQ[b*g^3 - 8*a*h^3, 0] && EqQ[g^2 + 2*f*h,
0] && EqQ[b*d*f + b*c*g - 4*a*e*h, 0]

Rule 207

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> -Simp[ArcTanh[(Rt[b, 2]*x)/Rt[-a, 2]]/(Rt[-a, 2]*Rt[b, 2]), x] /;
 FreeQ[{a, b}, x] && NegQ[a/b] && (LtQ[a, 0] || GtQ[b, 0])

Rubi steps

\begin{align*} \int \frac{2-2 x-x^2}{\left (2+d+d x+x^2\right ) \sqrt{-1-x^3}} \, dx &=-\left (4 \operatorname{Subst}\left (\int \frac{1}{-2-(-2-2 d) x^2} \, dx,x,\frac{1+x}{\sqrt{-1-x^3}}\right )\right )\\ &=\frac{2 \tanh ^{-1}\left (\frac{\sqrt{1+d} (1+x)}{\sqrt{-1-x^3}}\right )}{\sqrt{1+d}}\\ \end{align*}

Mathematica [C]  time = 0.462222, size = 426, normalized size = 13.31 \[ \frac{\sqrt{\frac{x+1}{1+\sqrt [3]{-1}}} \sqrt{x^2-x+1} \left (\frac{2 \sqrt{3} \left (1+\sqrt [3]{-1}\right ) \left (\sqrt [3]{-1}-x\right ) F\left (\sin ^{-1}\left (\sqrt{\frac{(-1)^{2/3} x+1}{1+\sqrt [3]{-1}}}\right )|\sqrt [3]{-1}\right )}{(-1)^{2/3} x+1}-\frac{3 i \left (\left (-\left (1+\sqrt [3]{-1}\right ) d^2+\left (1+\sqrt [3]{-1}\right ) \left (\sqrt{d^2-4 d-8}+4\right ) d-2 \sqrt [3]{-1} \sqrt{d^2-4 d-8}+4 \sqrt{d^2-4 d-8}+8 \sqrt [3]{-1}+8\right ) \Pi \left (\frac{2 i \sqrt{3}}{d-\sqrt{d^2-4 d-8}+2 \sqrt [3]{-1}};\sin ^{-1}\left (\sqrt{\frac{(-1)^{2/3} x+1}{1+\sqrt [3]{-1}}}\right )|\sqrt [3]{-1}\right )+\left (\left (1+\sqrt [3]{-1}\right ) d^2+\left (1+\sqrt [3]{-1}\right ) \left (\sqrt{d^2-4 d-8}-4\right ) d-2 \left (\sqrt [3]{-1} \sqrt{d^2-4 d-8}-2 \sqrt{d^2-4 d-8}+4 \sqrt [3]{-1}+4\right )\right ) \Pi \left (\frac{2 i \sqrt{3}}{d+\sqrt{d^2-4 d-8}+2 \sqrt [3]{-1}};\sin ^{-1}\left (\sqrt{\frac{(-1)^{2/3} x+1}{1+\sqrt [3]{-1}}}\right )|\sqrt [3]{-1}\right )\right )}{\left (\sqrt [3]{-1} d+d+(-1)^{2/3}+2\right ) \sqrt{d^2-4 d-8}}\right )}{3 \sqrt{-x^3-1}} \]

Warning: Unable to verify antiderivative.

[In]

Integrate[(2 - 2*x - x^2)/((2 + d + d*x + x^2)*Sqrt[-1 - x^3]),x]

[Out]

(Sqrt[(1 + x)/(1 + (-1)^(1/3))]*Sqrt[1 - x + x^2]*((2*Sqrt[3]*(1 + (-1)^(1/3))*((-1)^(1/3) - x)*EllipticF[ArcS
in[Sqrt[(1 + (-1)^(2/3)*x)/(1 + (-1)^(1/3))]], (-1)^(1/3)])/(1 + (-1)^(2/3)*x) - ((3*I)*((8 + 8*(-1)^(1/3) - (
1 + (-1)^(1/3))*d^2 + 4*Sqrt[-8 - 4*d + d^2] - 2*(-1)^(1/3)*Sqrt[-8 - 4*d + d^2] + (1 + (-1)^(1/3))*d*(4 + Sqr
t[-8 - 4*d + d^2]))*EllipticPi[((2*I)*Sqrt[3])/(2*(-1)^(1/3) + d - Sqrt[-8 - 4*d + d^2]), ArcSin[Sqrt[(1 + (-1
)^(2/3)*x)/(1 + (-1)^(1/3))]], (-1)^(1/3)] + ((1 + (-1)^(1/3))*d^2 + (1 + (-1)^(1/3))*d*(-4 + Sqrt[-8 - 4*d +
d^2]) - 2*(4 + 4*(-1)^(1/3) - 2*Sqrt[-8 - 4*d + d^2] + (-1)^(1/3)*Sqrt[-8 - 4*d + d^2]))*EllipticPi[((2*I)*Sqr
t[3])/(2*(-1)^(1/3) + d + Sqrt[-8 - 4*d + d^2]), ArcSin[Sqrt[(1 + (-1)^(2/3)*x)/(1 + (-1)^(1/3))]], (-1)^(1/3)
]))/((2 + (-1)^(2/3) + d + (-1)^(1/3)*d)*Sqrt[-8 - 4*d + d^2])))/(3*Sqrt[-1 - x^3])

________________________________________________________________________________________

Maple [C]  time = 0.035, size = 1888, normalized size = 59. \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((-x^2-2*x+2)/(d*x+x^2+d+2)/(-x^3-1)^(1/2),x)

[Out]

2/3*I*3^(1/2)*(I*(x-1/2-1/2*I*3^(1/2))*3^(1/2))^(1/2)*((1+x)/(3/2+1/2*I*3^(1/2)))^(1/2)*(-I*(x-1/2+1/2*I*3^(1/
2))*3^(1/2))^(1/2)/(-x^3-1)^(1/2)*EllipticF(1/3*3^(1/2)*(I*(x-1/2-1/2*I*3^(1/2))*3^(1/2))^(1/2),(I*3^(1/2)/(3/
2+1/2*I*3^(1/2)))^(1/2))+1/3*I/(d^2-4*d-8)^(1/2)*3^(1/2)*(I*3^(1/2)*x-1/2*I*3^(1/2)+3/2)^(1/2)*(1/(3/2+1/2*I*3
^(1/2))*x+1/(3/2+1/2*I*3^(1/2)))^(1/2)*(-I*3^(1/2)*x+1/2*I*3^(1/2)+3/2)^(1/2)/(-x^3-1)^(1/2)/(1/2+1/2*I*3^(1/2
)+1/2*d-1/2*(d^2-4*d-8)^(1/2))*EllipticPi(1/3*3^(1/2)*(I*(x-1/2-1/2*I*3^(1/2))*3^(1/2))^(1/2),I*3^(1/2)/(1/2+1
/2*I*3^(1/2)+1/2*d-1/2*(d^2-4*d-8)^(1/2)),(I*3^(1/2)/(3/2+1/2*I*3^(1/2)))^(1/2))*d^2-1/3*I*3^(1/2)*(I*3^(1/2)*
x-1/2*I*3^(1/2)+3/2)^(1/2)*(1/(3/2+1/2*I*3^(1/2))*x+1/(3/2+1/2*I*3^(1/2)))^(1/2)*(-I*3^(1/2)*x+1/2*I*3^(1/2)+3
/2)^(1/2)/(-x^3-1)^(1/2)/(1/2+1/2*I*3^(1/2)+1/2*d-1/2*(d^2-4*d-8)^(1/2))*EllipticPi(1/3*3^(1/2)*(I*(x-1/2-1/2*
I*3^(1/2))*3^(1/2))^(1/2),I*3^(1/2)/(1/2+1/2*I*3^(1/2)+1/2*d-1/2*(d^2-4*d-8)^(1/2)),(I*3^(1/2)/(3/2+1/2*I*3^(1
/2)))^(1/2))*d-4/3*I/(d^2-4*d-8)^(1/2)*3^(1/2)*(I*3^(1/2)*x-1/2*I*3^(1/2)+3/2)^(1/2)*(1/(3/2+1/2*I*3^(1/2))*x+
1/(3/2+1/2*I*3^(1/2)))^(1/2)*(-I*3^(1/2)*x+1/2*I*3^(1/2)+3/2)^(1/2)/(-x^3-1)^(1/2)/(1/2+1/2*I*3^(1/2)+1/2*d-1/
2*(d^2-4*d-8)^(1/2))*EllipticPi(1/3*3^(1/2)*(I*(x-1/2-1/2*I*3^(1/2))*3^(1/2))^(1/2),I*3^(1/2)/(1/2+1/2*I*3^(1/
2)+1/2*d-1/2*(d^2-4*d-8)^(1/2)),(I*3^(1/2)/(3/2+1/2*I*3^(1/2)))^(1/2))*d+2/3*I*3^(1/2)*(I*3^(1/2)*x-1/2*I*3^(1
/2)+3/2)^(1/2)*(1/(3/2+1/2*I*3^(1/2))*x+1/(3/2+1/2*I*3^(1/2)))^(1/2)*(-I*3^(1/2)*x+1/2*I*3^(1/2)+3/2)^(1/2)/(-
x^3-1)^(1/2)/(1/2+1/2*I*3^(1/2)+1/2*d-1/2*(d^2-4*d-8)^(1/2))*EllipticPi(1/3*3^(1/2)*(I*(x-1/2-1/2*I*3^(1/2))*3
^(1/2))^(1/2),I*3^(1/2)/(1/2+1/2*I*3^(1/2)+1/2*d-1/2*(d^2-4*d-8)^(1/2)),(I*3^(1/2)/(3/2+1/2*I*3^(1/2)))^(1/2))
-8/3*I/(d^2-4*d-8)^(1/2)*3^(1/2)*(I*3^(1/2)*x-1/2*I*3^(1/2)+3/2)^(1/2)*(1/(3/2+1/2*I*3^(1/2))*x+1/(3/2+1/2*I*3
^(1/2)))^(1/2)*(-I*3^(1/2)*x+1/2*I*3^(1/2)+3/2)^(1/2)/(-x^3-1)^(1/2)/(1/2+1/2*I*3^(1/2)+1/2*d-1/2*(d^2-4*d-8)^
(1/2))*EllipticPi(1/3*3^(1/2)*(I*(x-1/2-1/2*I*3^(1/2))*3^(1/2))^(1/2),I*3^(1/2)/(1/2+1/2*I*3^(1/2)+1/2*d-1/2*(
d^2-4*d-8)^(1/2)),(I*3^(1/2)/(3/2+1/2*I*3^(1/2)))^(1/2))-1/3*I/(d^2-4*d-8)^(1/2)*3^(1/2)*(I*3^(1/2)*x-1/2*I*3^
(1/2)+3/2)^(1/2)*(1/(3/2+1/2*I*3^(1/2))*x+1/(3/2+1/2*I*3^(1/2)))^(1/2)*(-I*3^(1/2)*x+1/2*I*3^(1/2)+3/2)^(1/2)/
(-x^3-1)^(1/2)/(1/2+1/2*I*3^(1/2)+1/2*d+1/2*(d^2-4*d-8)^(1/2))*EllipticPi(1/3*3^(1/2)*(I*(x-1/2-1/2*I*3^(1/2))
*3^(1/2))^(1/2),I*3^(1/2)/(1/2+1/2*I*3^(1/2)+1/2*d+1/2*(d^2-4*d-8)^(1/2)),(I*3^(1/2)/(3/2+1/2*I*3^(1/2)))^(1/2
))*d^2-1/3*I*3^(1/2)*(I*3^(1/2)*x-1/2*I*3^(1/2)+3/2)^(1/2)*(1/(3/2+1/2*I*3^(1/2))*x+1/(3/2+1/2*I*3^(1/2)))^(1/
2)*(-I*3^(1/2)*x+1/2*I*3^(1/2)+3/2)^(1/2)/(-x^3-1)^(1/2)/(1/2+1/2*I*3^(1/2)+1/2*d+1/2*(d^2-4*d-8)^(1/2))*Ellip
ticPi(1/3*3^(1/2)*(I*(x-1/2-1/2*I*3^(1/2))*3^(1/2))^(1/2),I*3^(1/2)/(1/2+1/2*I*3^(1/2)+1/2*d+1/2*(d^2-4*d-8)^(
1/2)),(I*3^(1/2)/(3/2+1/2*I*3^(1/2)))^(1/2))*d+4/3*I/(d^2-4*d-8)^(1/2)*3^(1/2)*(I*3^(1/2)*x-1/2*I*3^(1/2)+3/2)
^(1/2)*(1/(3/2+1/2*I*3^(1/2))*x+1/(3/2+1/2*I*3^(1/2)))^(1/2)*(-I*3^(1/2)*x+1/2*I*3^(1/2)+3/2)^(1/2)/(-x^3-1)^(
1/2)/(1/2+1/2*I*3^(1/2)+1/2*d+1/2*(d^2-4*d-8)^(1/2))*EllipticPi(1/3*3^(1/2)*(I*(x-1/2-1/2*I*3^(1/2))*3^(1/2))^
(1/2),I*3^(1/2)/(1/2+1/2*I*3^(1/2)+1/2*d+1/2*(d^2-4*d-8)^(1/2)),(I*3^(1/2)/(3/2+1/2*I*3^(1/2)))^(1/2))*d+2/3*I
*3^(1/2)*(I*3^(1/2)*x-1/2*I*3^(1/2)+3/2)^(1/2)*(1/(3/2+1/2*I*3^(1/2))*x+1/(3/2+1/2*I*3^(1/2)))^(1/2)*(-I*3^(1/
2)*x+1/2*I*3^(1/2)+3/2)^(1/2)/(-x^3-1)^(1/2)/(1/2+1/2*I*3^(1/2)+1/2*d+1/2*(d^2-4*d-8)^(1/2))*EllipticPi(1/3*3^
(1/2)*(I*(x-1/2-1/2*I*3^(1/2))*3^(1/2))^(1/2),I*3^(1/2)/(1/2+1/2*I*3^(1/2)+1/2*d+1/2*(d^2-4*d-8)^(1/2)),(I*3^(
1/2)/(3/2+1/2*I*3^(1/2)))^(1/2))+8/3*I/(d^2-4*d-8)^(1/2)*3^(1/2)*(I*3^(1/2)*x-1/2*I*3^(1/2)+3/2)^(1/2)*(1/(3/2
+1/2*I*3^(1/2))*x+1/(3/2+1/2*I*3^(1/2)))^(1/2)*(-I*3^(1/2)*x+1/2*I*3^(1/2)+3/2)^(1/2)/(-x^3-1)^(1/2)/(1/2+1/2*
I*3^(1/2)+1/2*d+1/2*(d^2-4*d-8)^(1/2))*EllipticPi(1/3*3^(1/2)*(I*(x-1/2-1/2*I*3^(1/2))*3^(1/2))^(1/2),I*3^(1/2
)/(1/2+1/2*I*3^(1/2)+1/2*d+1/2*(d^2-4*d-8)^(1/2)),(I*3^(1/2)/(3/2+1/2*I*3^(1/2)))^(1/2))

________________________________________________________________________________________

Maxima [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: ValueError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-x^2-2*x+2)/(d*x+x^2+d+2)/(-x^3-1)^(1/2),x, algorithm="maxima")

[Out]

Exception raised: ValueError

________________________________________________________________________________________

Fricas [B]  time = 1.58844, size = 459, normalized size = 14.34 \begin{align*} \left [\frac{\log \left (-\frac{2 \,{\left (3 \, d + 4\right )} x^{3} - x^{4} -{\left (d^{2} + 2 \, d + 4\right )} x^{2} - 4 \, \sqrt{-x^{3} - 1}{\left ({\left (d + 2\right )} x - x^{2} + d\right )} \sqrt{d + 1} - d^{2} - 2 \,{\left (d^{2} + 2 \, d\right )} x + 4 \, d + 4}{2 \, d x^{3} + x^{4} +{\left (d^{2} + 2 \, d + 4\right )} x^{2} + d^{2} + 2 \,{\left (d^{2} + 2 \, d\right )} x + 4 \, d + 4}\right )}{2 \, \sqrt{d + 1}}, -\frac{\sqrt{-d - 1} \arctan \left (-\frac{\sqrt{-x^{3} - 1}{\left ({\left (d + 2\right )} x - x^{2} + d\right )} \sqrt{-d - 1}}{2 \,{\left ({\left (d + 1\right )} x^{3} + d + 1\right )}}\right )}{d + 1}\right ] \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-x^2-2*x+2)/(d*x+x^2+d+2)/(-x^3-1)^(1/2),x, algorithm="fricas")

[Out]

[1/2*log(-(2*(3*d + 4)*x^3 - x^4 - (d^2 + 2*d + 4)*x^2 - 4*sqrt(-x^3 - 1)*((d + 2)*x - x^2 + d)*sqrt(d + 1) -
d^2 - 2*(d^2 + 2*d)*x + 4*d + 4)/(2*d*x^3 + x^4 + (d^2 + 2*d + 4)*x^2 + d^2 + 2*(d^2 + 2*d)*x + 4*d + 4))/sqrt
(d + 1), -sqrt(-d - 1)*arctan(-1/2*sqrt(-x^3 - 1)*((d + 2)*x - x^2 + d)*sqrt(-d - 1)/((d + 1)*x^3 + d + 1))/(d
 + 1)]

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} - \int \frac{2 x}{d x \sqrt{- x^{3} - 1} + d \sqrt{- x^{3} - 1} + x^{2} \sqrt{- x^{3} - 1} + 2 \sqrt{- x^{3} - 1}}\, dx - \int \frac{x^{2}}{d x \sqrt{- x^{3} - 1} + d \sqrt{- x^{3} - 1} + x^{2} \sqrt{- x^{3} - 1} + 2 \sqrt{- x^{3} - 1}}\, dx - \int - \frac{2}{d x \sqrt{- x^{3} - 1} + d \sqrt{- x^{3} - 1} + x^{2} \sqrt{- x^{3} - 1} + 2 \sqrt{- x^{3} - 1}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-x**2-2*x+2)/(d*x+x**2+d+2)/(-x**3-1)**(1/2),x)

[Out]

-Integral(2*x/(d*x*sqrt(-x**3 - 1) + d*sqrt(-x**3 - 1) + x**2*sqrt(-x**3 - 1) + 2*sqrt(-x**3 - 1)), x) - Integ
ral(x**2/(d*x*sqrt(-x**3 - 1) + d*sqrt(-x**3 - 1) + x**2*sqrt(-x**3 - 1) + 2*sqrt(-x**3 - 1)), x) - Integral(-
2/(d*x*sqrt(-x**3 - 1) + d*sqrt(-x**3 - 1) + x**2*sqrt(-x**3 - 1) + 2*sqrt(-x**3 - 1)), x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int -\frac{x^{2} + 2 \, x - 2}{\sqrt{-x^{3} - 1}{\left (d x + x^{2} + d + 2\right )}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-x^2-2*x+2)/(d*x+x^2+d+2)/(-x^3-1)^(1/2),x, algorithm="giac")

[Out]

integrate(-(x^2 + 2*x - 2)/(sqrt(-x^3 - 1)*(d*x + x^2 + d + 2)), x)