3.103 \(\int \frac{1+\sqrt{3}-x}{(1-\sqrt{3}-x) \sqrt{-1+x^3}} \, dx\)

Optimal. Leaf size=44 \[ \frac{2 \tan ^{-1}\left (\frac{\sqrt{2 \sqrt{3}-3} (1-x)}{\sqrt{x^3-1}}\right )}{\sqrt{2 \sqrt{3}-3}} \]

[Out]

(2*ArcTan[(Sqrt[-3 + 2*Sqrt[3]]*(1 - x))/Sqrt[-1 + x^3]])/Sqrt[-3 + 2*Sqrt[3]]

________________________________________________________________________________________

Rubi [A]  time = 0.104045, antiderivative size = 44, normalized size of antiderivative = 1., number of steps used = 2, number of rules used = 2, integrand size = 34, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.059, Rules used = {2140, 203} \[ \frac{2 \tan ^{-1}\left (\frac{\sqrt{2 \sqrt{3}-3} (1-x)}{\sqrt{x^3-1}}\right )}{\sqrt{2 \sqrt{3}-3}} \]

Antiderivative was successfully verified.

[In]

Int[(1 + Sqrt[3] - x)/((1 - Sqrt[3] - x)*Sqrt[-1 + x^3]),x]

[Out]

(2*ArcTan[(Sqrt[-3 + 2*Sqrt[3]]*(1 - x))/Sqrt[-1 + x^3]])/Sqrt[-3 + 2*Sqrt[3]]

Rule 2140

Int[((e_) + (f_.)*(x_))/(((c_) + (d_.)*(x_))*Sqrt[(a_) + (b_.)*(x_)^3]), x_Symbol] :> With[{k = Simplify[(d*e
+ 2*c*f)/(c*f)]}, Dist[((1 + k)*e)/d, Subst[Int[1/(1 + (3 + 2*k)*a*x^2), x], x, (1 + ((1 + k)*d*x)/c)/Sqrt[a +
 b*x^3]], x]] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[d*e - c*f, 0] && EqQ[b^2*c^6 - 20*a*b*c^3*d^3 - 8*a^2*d^6
, 0] && EqQ[6*a*d^4*e - c*f*(b*c^3 - 22*a*d^3), 0]

Rule 203

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTan[(Rt[b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[b, 2]), x] /;
 FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a, 0] || GtQ[b, 0])

Rubi steps

\begin{align*} \int \frac{1+\sqrt{3}-x}{\left (1-\sqrt{3}-x\right ) \sqrt{-1+x^3}} \, dx &=2 \operatorname{Subst}\left (\int \frac{1}{1-\left (3-2 \sqrt{3}\right ) x^2} \, dx,x,\frac{1-x}{\sqrt{-1+x^3}}\right )\\ &=\frac{2 \tan ^{-1}\left (\frac{\sqrt{-3+2 \sqrt{3}} (1-x)}{\sqrt{-1+x^3}}\right )}{\sqrt{-3+2 \sqrt{3}}}\\ \end{align*}

Mathematica [C]  time = 0.368423, size = 267, normalized size = 6.07 \[ \frac{2 \sqrt{6} \sqrt{\frac{i (x-1)}{\sqrt{3}-3 i}} \left (4 \sqrt{-2 i x+\sqrt{3}-i} \sqrt{x^2+x+1} \Pi \left (\frac{2 \sqrt{3}}{-3 i+(1+2 i) \sqrt{3}};\sin ^{-1}\left (\frac{\sqrt{-2 i x+\sqrt{3}-i}}{\sqrt{2} \sqrt [4]{3}}\right )|\frac{2 \sqrt{3}}{-3 i+\sqrt{3}}\right )+\sqrt{2 i x+\sqrt{3}+i} \left (\left ((1+2 i)-i \sqrt{3}\right ) x-\sqrt{3}+(2+i)\right ) F\left (\sin ^{-1}\left (\frac{\sqrt{-2 i x+\sqrt{3}-i}}{\sqrt{2} \sqrt [4]{3}}\right )|\frac{2 \sqrt{3}}{-3 i+\sqrt{3}}\right )\right )}{\left ((1+2 i) \sqrt{3}-3 i\right ) \sqrt{-2 i x+\sqrt{3}-i} \sqrt{x^3-1}} \]

Warning: Unable to verify antiderivative.

[In]

Integrate[(1 + Sqrt[3] - x)/((1 - Sqrt[3] - x)*Sqrt[-1 + x^3]),x]

[Out]

(2*Sqrt[6]*Sqrt[(I*(-1 + x))/(-3*I + Sqrt[3])]*(Sqrt[I + Sqrt[3] + (2*I)*x]*((2 + I) - Sqrt[3] + ((1 + 2*I) -
I*Sqrt[3])*x)*EllipticF[ArcSin[Sqrt[-I + Sqrt[3] - (2*I)*x]/(Sqrt[2]*3^(1/4))], (2*Sqrt[3])/(-3*I + Sqrt[3])]
+ 4*Sqrt[-I + Sqrt[3] - (2*I)*x]*Sqrt[1 + x + x^2]*EllipticPi[(2*Sqrt[3])/(-3*I + (1 + 2*I)*Sqrt[3]), ArcSin[S
qrt[-I + Sqrt[3] - (2*I)*x]/(Sqrt[2]*3^(1/4))], (2*Sqrt[3])/(-3*I + Sqrt[3])]))/((-3*I + (1 + 2*I)*Sqrt[3])*Sq
rt[-I + Sqrt[3] - (2*I)*x]*Sqrt[-1 + x^3])

________________________________________________________________________________________

Maple [C]  time = 0.034, size = 245, normalized size = 5.6 \begin{align*} 2\,{\frac{-3/2-i/2\sqrt{3}}{\sqrt{{x}^{3}-1}}\sqrt{{\frac{x-1}{-3/2-i/2\sqrt{3}}}}\sqrt{{\frac{x+1/2-i/2\sqrt{3}}{3/2-i/2\sqrt{3}}}}\sqrt{{\frac{x+1/2+i/2\sqrt{3}}{3/2+i/2\sqrt{3}}}}{\it EllipticF} \left ( \sqrt{{\frac{x-1}{-3/2-i/2\sqrt{3}}}},\sqrt{{\frac{3/2+i/2\sqrt{3}}{3/2-i/2\sqrt{3}}}} \right ) }-4\,{\frac{-3/2-i/2\sqrt{3}}{\sqrt{{x}^{3}-1}}\sqrt{{\frac{x-1}{-3/2-i/2\sqrt{3}}}}\sqrt{{\frac{x+1/2-i/2\sqrt{3}}{3/2-i/2\sqrt{3}}}}\sqrt{{\frac{x+1/2+i/2\sqrt{3}}{3/2+i/2\sqrt{3}}}}{\it EllipticPi} \left ( \sqrt{{\frac{x-1}{-3/2-i/2\sqrt{3}}}},1/3\, \left ( 3/2+i/2\sqrt{3} \right ) \sqrt{3},\sqrt{{\frac{3/2+i/2\sqrt{3}}{3/2-i/2\sqrt{3}}}} \right ) } \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((1-x+3^(1/2))/(1-x-3^(1/2))/(x^3-1)^(1/2),x)

[Out]

2*(-3/2-1/2*I*3^(1/2))*((x-1)/(-3/2-1/2*I*3^(1/2)))^(1/2)*((x+1/2-1/2*I*3^(1/2))/(3/2-1/2*I*3^(1/2)))^(1/2)*((
x+1/2+1/2*I*3^(1/2))/(3/2+1/2*I*3^(1/2)))^(1/2)/(x^3-1)^(1/2)*EllipticF(((x-1)/(-3/2-1/2*I*3^(1/2)))^(1/2),((3
/2+1/2*I*3^(1/2))/(3/2-1/2*I*3^(1/2)))^(1/2))-4*(-3/2-1/2*I*3^(1/2))*((x-1)/(-3/2-1/2*I*3^(1/2)))^(1/2)*((x+1/
2-1/2*I*3^(1/2))/(3/2-1/2*I*3^(1/2)))^(1/2)*((x+1/2+1/2*I*3^(1/2))/(3/2+1/2*I*3^(1/2)))^(1/2)/(x^3-1)^(1/2)*El
lipticPi(((x-1)/(-3/2-1/2*I*3^(1/2)))^(1/2),1/3*(3/2+1/2*I*3^(1/2))*3^(1/2),((3/2+1/2*I*3^(1/2))/(3/2-1/2*I*3^
(1/2)))^(1/2))

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{x - \sqrt{3} - 1}{\sqrt{x^{3} - 1}{\left (x + \sqrt{3} - 1\right )}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((1-x+3^(1/2))/(1-x-3^(1/2))/(x^3-1)^(1/2),x, algorithm="maxima")

[Out]

integrate((x - sqrt(3) - 1)/(sqrt(x^3 - 1)*(x + sqrt(3) - 1)), x)

________________________________________________________________________________________

Fricas [A]  time = 1.60483, size = 155, normalized size = 3.52 \begin{align*} \frac{1}{3} \, \sqrt{3} \sqrt{2 \, \sqrt{3} + 3} \arctan \left (\frac{{\left (\sqrt{3}{\left (x^{2} + 4 \, x - 2\right )} - 6 \, x + 6\right )} \sqrt{2 \, \sqrt{3} + 3}}{6 \, \sqrt{x^{3} - 1}}\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((1-x+3^(1/2))/(1-x-3^(1/2))/(x^3-1)^(1/2),x, algorithm="fricas")

[Out]

1/3*sqrt(3)*sqrt(2*sqrt(3) + 3)*arctan(1/6*(sqrt(3)*(x^2 + 4*x - 2) - 6*x + 6)*sqrt(2*sqrt(3) + 3)/sqrt(x^3 -
1))

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{x - \sqrt{3} - 1}{\sqrt{\left (x - 1\right ) \left (x^{2} + x + 1\right )} \left (x - 1 + \sqrt{3}\right )}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((1-x+3**(1/2))/(1-x-3**(1/2))/(x**3-1)**(1/2),x)

[Out]

Integral((x - sqrt(3) - 1)/(sqrt((x - 1)*(x**2 + x + 1))*(x - 1 + sqrt(3))), x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{x - \sqrt{3} - 1}{\sqrt{x^{3} - 1}{\left (x + \sqrt{3} - 1\right )}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((1-x+3^(1/2))/(1-x-3^(1/2))/(x^3-1)^(1/2),x, algorithm="giac")

[Out]

integrate((x - sqrt(3) - 1)/(sqrt(x^3 - 1)*(x + sqrt(3) - 1)), x)