3.102 \(\int \frac{1+\sqrt{3}-x}{(1-\sqrt{3}-x) \sqrt{1-x^3}} \, dx\)

Optimal. Leaf size=46 \[ \frac{2 \tanh ^{-1}\left (\frac{\sqrt{2 \sqrt{3}-3} (1-x)}{\sqrt{1-x^3}}\right )}{\sqrt{2 \sqrt{3}-3}} \]

[Out]

(2*ArcTanh[(Sqrt[-3 + 2*Sqrt[3]]*(1 - x))/Sqrt[1 - x^3]])/Sqrt[-3 + 2*Sqrt[3]]

________________________________________________________________________________________

Rubi [A]  time = 0.114319, antiderivative size = 46, normalized size of antiderivative = 1., number of steps used = 2, number of rules used = 2, integrand size = 36, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.056, Rules used = {2140, 206} \[ \frac{2 \tanh ^{-1}\left (\frac{\sqrt{2 \sqrt{3}-3} (1-x)}{\sqrt{1-x^3}}\right )}{\sqrt{2 \sqrt{3}-3}} \]

Antiderivative was successfully verified.

[In]

Int[(1 + Sqrt[3] - x)/((1 - Sqrt[3] - x)*Sqrt[1 - x^3]),x]

[Out]

(2*ArcTanh[(Sqrt[-3 + 2*Sqrt[3]]*(1 - x))/Sqrt[1 - x^3]])/Sqrt[-3 + 2*Sqrt[3]]

Rule 2140

Int[((e_) + (f_.)*(x_))/(((c_) + (d_.)*(x_))*Sqrt[(a_) + (b_.)*(x_)^3]), x_Symbol] :> With[{k = Simplify[(d*e
+ 2*c*f)/(c*f)]}, Dist[((1 + k)*e)/d, Subst[Int[1/(1 + (3 + 2*k)*a*x^2), x], x, (1 + ((1 + k)*d*x)/c)/Sqrt[a +
 b*x^3]], x]] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[d*e - c*f, 0] && EqQ[b^2*c^6 - 20*a*b*c^3*d^3 - 8*a^2*d^6
, 0] && EqQ[6*a*d^4*e - c*f*(b*c^3 - 22*a*d^3), 0]

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rubi steps

\begin{align*} \int \frac{1+\sqrt{3}-x}{\left (1-\sqrt{3}-x\right ) \sqrt{1-x^3}} \, dx &=2 \operatorname{Subst}\left (\int \frac{1}{1+\left (3-2 \sqrt{3}\right ) x^2} \, dx,x,\frac{1-x}{\sqrt{1-x^3}}\right )\\ &=\frac{2 \tanh ^{-1}\left (\frac{\sqrt{-3+2 \sqrt{3}} (1-x)}{\sqrt{1-x^3}}\right )}{\sqrt{-3+2 \sqrt{3}}}\\ \end{align*}

Mathematica [C]  time = 0.455526, size = 269, normalized size = 5.85 \[ \frac{2 \sqrt{6} \sqrt{\frac{i (x-1)}{\sqrt{3}-3 i}} \left (4 \sqrt{-2 i x+\sqrt{3}-i} \sqrt{x^2+x+1} \Pi \left (\frac{2 \sqrt{3}}{-3 i+(1+2 i) \sqrt{3}};\sin ^{-1}\left (\frac{\sqrt{-2 i x+\sqrt{3}-i}}{\sqrt{2} \sqrt [4]{3}}\right )|\frac{2 \sqrt{3}}{-3 i+\sqrt{3}}\right )+\sqrt{2 i x+\sqrt{3}+i} \left (\left ((1+2 i)-i \sqrt{3}\right ) x-\sqrt{3}+(2+i)\right ) F\left (\sin ^{-1}\left (\frac{\sqrt{-2 i x+\sqrt{3}-i}}{\sqrt{2} \sqrt [4]{3}}\right )|\frac{2 \sqrt{3}}{-3 i+\sqrt{3}}\right )\right )}{\left ((1+2 i) \sqrt{3}-3 i\right ) \sqrt{-2 i x+\sqrt{3}-i} \sqrt{1-x^3}} \]

Warning: Unable to verify antiderivative.

[In]

Integrate[(1 + Sqrt[3] - x)/((1 - Sqrt[3] - x)*Sqrt[1 - x^3]),x]

[Out]

(2*Sqrt[6]*Sqrt[(I*(-1 + x))/(-3*I + Sqrt[3])]*(Sqrt[I + Sqrt[3] + (2*I)*x]*((2 + I) - Sqrt[3] + ((1 + 2*I) -
I*Sqrt[3])*x)*EllipticF[ArcSin[Sqrt[-I + Sqrt[3] - (2*I)*x]/(Sqrt[2]*3^(1/4))], (2*Sqrt[3])/(-3*I + Sqrt[3])]
+ 4*Sqrt[-I + Sqrt[3] - (2*I)*x]*Sqrt[1 + x + x^2]*EllipticPi[(2*Sqrt[3])/(-3*I + (1 + 2*I)*Sqrt[3]), ArcSin[S
qrt[-I + Sqrt[3] - (2*I)*x]/(Sqrt[2]*3^(1/4))], (2*Sqrt[3])/(-3*I + Sqrt[3])]))/((-3*I + (1 + 2*I)*Sqrt[3])*Sq
rt[-I + Sqrt[3] - (2*I)*x]*Sqrt[1 - x^3])

________________________________________________________________________________________

Maple [C]  time = 0.049, size = 243, normalized size = 5.3 \begin{align*}{-{\frac{2\,i}{3}}\sqrt{3}\sqrt{i \left ( x+{\frac{1}{2}}-{\frac{i}{2}}\sqrt{3} \right ) \sqrt{3}}\sqrt{{\frac{x-1}{-{\frac{3}{2}}+{\frac{i}{2}}\sqrt{3}}}}\sqrt{-i \left ( x+{\frac{1}{2}}+{\frac{i}{2}}\sqrt{3} \right ) \sqrt{3}}{\it EllipticF} \left ({\frac{\sqrt{3}}{3}\sqrt{i \left ( x+{\frac{1}{2}}-{\frac{i}{2}}\sqrt{3} \right ) \sqrt{3}}},\sqrt{{\frac{i\sqrt{3}}{-{\frac{3}{2}}+{\frac{i}{2}}\sqrt{3}}}} \right ){\frac{1}{\sqrt{-{x}^{3}+1}}}}+{\frac{4\,i}{-{\frac{3}{2}}+{\frac{i}{2}}\sqrt{3}+\sqrt{3}}\sqrt{i \left ( x+{\frac{1}{2}}-{\frac{i}{2}}\sqrt{3} \right ) \sqrt{3}}\sqrt{{\frac{x-1}{-{\frac{3}{2}}+{\frac{i}{2}}\sqrt{3}}}}\sqrt{-i \left ( x+{\frac{1}{2}}+{\frac{i}{2}}\sqrt{3} \right ) \sqrt{3}}{\it EllipticPi} \left ({\frac{\sqrt{3}}{3}\sqrt{i \left ( x+{\frac{1}{2}}-{\frac{i}{2}}\sqrt{3} \right ) \sqrt{3}}},{\frac{i\sqrt{3}}{-{\frac{3}{2}}+{\frac{i}{2}}\sqrt{3}+\sqrt{3}}},\sqrt{{\frac{i\sqrt{3}}{-{\frac{3}{2}}+{\frac{i}{2}}\sqrt{3}}}} \right ){\frac{1}{\sqrt{-{x}^{3}+1}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((1-x+3^(1/2))/(1-x-3^(1/2))/(-x^3+1)^(1/2),x)

[Out]

-2/3*I*3^(1/2)*(I*(x+1/2-1/2*I*3^(1/2))*3^(1/2))^(1/2)*((x-1)/(-3/2+1/2*I*3^(1/2)))^(1/2)*(-I*(x+1/2+1/2*I*3^(
1/2))*3^(1/2))^(1/2)/(-x^3+1)^(1/2)*EllipticF(1/3*3^(1/2)*(I*(x+1/2-1/2*I*3^(1/2))*3^(1/2))^(1/2),(I*3^(1/2)/(
-3/2+1/2*I*3^(1/2)))^(1/2))+4*I*(I*(x+1/2-1/2*I*3^(1/2))*3^(1/2))^(1/2)*((x-1)/(-3/2+1/2*I*3^(1/2)))^(1/2)*(-I
*(x+1/2+1/2*I*3^(1/2))*3^(1/2))^(1/2)/(-x^3+1)^(1/2)/(-3/2+1/2*I*3^(1/2)+3^(1/2))*EllipticPi(1/3*3^(1/2)*(I*(x
+1/2-1/2*I*3^(1/2))*3^(1/2))^(1/2),I*3^(1/2)/(-3/2+1/2*I*3^(1/2)+3^(1/2)),(I*3^(1/2)/(-3/2+1/2*I*3^(1/2)))^(1/
2))

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{x - \sqrt{3} - 1}{\sqrt{-x^{3} + 1}{\left (x + \sqrt{3} - 1\right )}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((1-x+3^(1/2))/(1-x-3^(1/2))/(-x^3+1)^(1/2),x, algorithm="maxima")

[Out]

integrate((x - sqrt(3) - 1)/(sqrt(-x^3 + 1)*(x + sqrt(3) - 1)), x)

________________________________________________________________________________________

Fricas [B]  time = 1.50751, size = 533, normalized size = 11.59 \begin{align*} \frac{1}{6} \, \sqrt{3} \sqrt{2 \, \sqrt{3} + 3} \log \left (\frac{x^{8} + 16 \, x^{7} + 112 \, x^{6} + 16 \, x^{5} + 112 \, x^{4} - 224 \, x^{3} + 64 \, x^{2} + 4 \,{\left (2 \, x^{6} + 18 \, x^{5} + 42 \, x^{4} + 8 \, x^{3} - \sqrt{3}{\left (x^{6} + 12 \, x^{5} + 18 \, x^{4} + 16 \, x^{3} - 12 \, x^{2} - 8\right )} - 24 \, x + 8\right )} \sqrt{-x^{3} + 1} \sqrt{2 \, \sqrt{3} + 3} - 16 \, \sqrt{3}{\left (x^{7} + 2 \, x^{6} + 6 \, x^{5} - 5 \, x^{4} + 2 \, x^{3} - 6 \, x^{2} + 4 \, x - 4\right )} - 128 \, x + 112}{x^{8} - 8 \, x^{7} + 16 \, x^{6} + 16 \, x^{5} - 56 \, x^{4} - 32 \, x^{3} + 64 \, x^{2} + 64 \, x + 16}\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((1-x+3^(1/2))/(1-x-3^(1/2))/(-x^3+1)^(1/2),x, algorithm="fricas")

[Out]

1/6*sqrt(3)*sqrt(2*sqrt(3) + 3)*log((x^8 + 16*x^7 + 112*x^6 + 16*x^5 + 112*x^4 - 224*x^3 + 64*x^2 + 4*(2*x^6 +
 18*x^5 + 42*x^4 + 8*x^3 - sqrt(3)*(x^6 + 12*x^5 + 18*x^4 + 16*x^3 - 12*x^2 - 8) - 24*x + 8)*sqrt(-x^3 + 1)*sq
rt(2*sqrt(3) + 3) - 16*sqrt(3)*(x^7 + 2*x^6 + 6*x^5 - 5*x^4 + 2*x^3 - 6*x^2 + 4*x - 4) - 128*x + 112)/(x^8 - 8
*x^7 + 16*x^6 + 16*x^5 - 56*x^4 - 32*x^3 + 64*x^2 + 64*x + 16))

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{x - \sqrt{3} - 1}{\sqrt{- \left (x - 1\right ) \left (x^{2} + x + 1\right )} \left (x - 1 + \sqrt{3}\right )}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((1-x+3**(1/2))/(1-x-3**(1/2))/(-x**3+1)**(1/2),x)

[Out]

Integral((x - sqrt(3) - 1)/(sqrt(-(x - 1)*(x**2 + x + 1))*(x - 1 + sqrt(3))), x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{x - \sqrt{3} - 1}{\sqrt{-x^{3} + 1}{\left (x + \sqrt{3} - 1\right )}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((1-x+3^(1/2))/(1-x-3^(1/2))/(-x^3+1)^(1/2),x, algorithm="giac")

[Out]

integrate((x - sqrt(3) - 1)/(sqrt(-x^3 + 1)*(x + sqrt(3) - 1)), x)