2.6 HW 6

  2.6.1 Problems listing
  2.6.2 Problem 9 section 5.2
  2.6.3 Problem 16 section 5.2
  2.6.4 Problem 19 section 5.2
  2.6.5 Problem 24 section 5.2
  2.6.6 Problem 8 section 5.3
  2.6.7 Problem 11 section 5.3
  2.6.8 Problem 14 section 5.3
  2.6.9 Problem 18 section 5.3
  2.6.10 Additional problem 1
  2.6.11 key solution for HW 6

2.6.1 Problems listing

PDF

PDF (letter size)
PDF (legal size)

2.6.2 Problem 9 section 5.2

In Problems 7 through 12, use the Wronskian to prove that the given functions are linearly independent on the indicated interval.

\(f\left ( x\right ) =e^{x},g\left ( x\right ) =\cos x,h\left ( x\right ) =\sin x\)

On the real line.

Solution

\[ W\left ( x\right ) =\begin {bmatrix} f\left ( x\right ) & g\left ( x\right ) & h\left ( x\right ) \\ f^{\prime }\left ( x\right ) & g^{\prime }\left ( x\right ) & h^{\prime }\left ( x\right ) \\ f^{\prime \prime }\left ( x\right ) & g^{\prime \prime }\left ( x\right ) & h^{\prime \prime }\left ( x\right ) \end {bmatrix} \] Hence\[ W\left ( x\right ) =\begin {bmatrix} e^{x} & \cos x & \sin x\\ e^{x} & -\sin x & \cos x\\ e^{x} & -\cos x & -\sin x \end {bmatrix} \] The determinant is, expanding along first row is\begin {align*} \left \vert W\left ( x\right ) \right \vert & =e^{x}\begin {vmatrix} -\sin x & \cos x\\ -\cos x & -\sin x \end {vmatrix} -\cos x\begin {vmatrix} e^{x} & \cos x\\ e^{x} & -\sin x \end {vmatrix} +\sin x\begin {vmatrix} e^{x} & -\sin x\\ e^{x} & -\cos x \end {vmatrix} \\ & =e^{x}\left ( \sin ^{2}x+\cos ^{2}x\right ) -\cos x\left ( -e^{x}\sin x-e^{x}\cos x\right ) +\sin x\left ( -e^{x}\cos x+e^{x}\sin x\right ) \end {align*}

But \(\sin ^{2}x+\cos ^{2}x=1\) and the above simplifies to\begin {align*} \left \vert W\left ( x\right ) \right \vert & =e^{x}-\left ( -e^{x}\sin x\cos x-e^{x}\cos ^{2}x\right ) +\left ( -e^{x}\cos x\sin x+e^{x}\sin ^{2}x\right ) \\ & =e^{x}+e^{x}\sin x\cos x+e^{x}\cos ^{2}x-e^{x}\cos x\sin x+e^{x}\sin ^{2}x\\ & =e^{x}+e^{x}\cos ^{2}x+e^{x}\sin ^{2}x\\ & =e^{x}+e^{x}\left ( \sin ^{2}x+\cos ^{2}x\right ) \\ & =2e^{x} \end {align*}

And since \(e^{x}\) is never zero on the real line, then \(\left \vert W\left ( x\right ) \right \vert \neq 0\) Hence functions are linearly independent.

2.6.3 Problem 16 section 5.2

In Problems 13 through 20, a third-order homogeneous linear equation and three linearly independent solutions are given. Find a particular solution satisfying the given initial conditions.\begin {align*} y^{\prime \prime \prime }-5y^{\prime \prime }+8y^{\prime }-4y & =0\\ y_{1} & =e^{x}\\ y_{2} & =e^{2x}\\ y_{3} & =xe^{2x} \end {align*}

I.C. are

\(y\left ( 0\right ) =1,y^{\prime }\left ( 0\right ) =4,y^{\prime \prime }\left ( 0\right ) =0\)

Solution

The general solution is\begin {align} y\left ( x\right ) & =c_{1}y_{2}+c_{2}y_{2}+c_{3}y_{3}\nonumber \\ & =c_{1}e^{x}+c_{2}e^{2x}+c_{3}xe^{2x} \tag {1} \end {align}

At \(y\left ( 0\right ) =0\) the above becomes\begin {equation} 1=c_{1}+c_{2} \tag {2} \end {equation} Taking derivative of (1) gives\[ y^{\prime }\left ( x\right ) =c_{1}e^{x}+2c_{2}e^{2x}+c_{3}\left ( e^{2x}+2xe^{2x}\right ) \] At \(y^{\prime }\left ( 0\right ) =4\) the above becomes\begin {equation} 4=c_{1}+2c_{2}+c_{3} \tag {3} \end {equation} Taking derivative of \(y^{\prime \prime }\left ( x\right ) \) gives\begin {align*} y^{\prime \prime }\left ( x\right ) & =c_{1}e^{x}+4c_{2}e^{2x}+c_{3}\left ( 2e^{2x}+2\left ( e^{2x}+2xe^{2x}\right ) \right ) \\ & =c_{1}e^{x}+4c_{2}e^{2x}+c_{3}\left ( 2e^{2x}+2e^{2x}+4xe^{2x}\right ) \end {align*}

At \(y^{\prime \prime }\left ( 0\right ) =0\) the above becomes\begin {equation} 0=c_{1}+4c_{2}+4c_{3} \tag {4} \end {equation} Equations (2,3,4) are now solved for \(c_{1},c_{2},c_{3}\)\[\begin {bmatrix} 1 & 1 & 0\\ 1 & 2 & 1\\ 1 & 4 & 4 \end {bmatrix}\begin {bmatrix} c_{1}\\ c_{2}\\ c_{3}\end {bmatrix} =\begin {bmatrix} 1\\ 4\\ 0 \end {bmatrix} \] Augmented matrix\[\begin {bmatrix} 1 & 1 & 0 & 1\\ 1 & 2 & 1 & 4\\ 1 & 4 & 4 & 0 \end {bmatrix} \] \(R_{2}\rightarrow R_{2}-R_{1}\)\[\begin {bmatrix} 1 & 1 & 0 & 1\\ 0 & 1 & 1 & 3\\ 1 & 4 & 4 & 0 \end {bmatrix} \] \(R_{3}\rightarrow R_{3}-R_{1}\)\[\begin {bmatrix} 1 & 1 & 0 & 1\\ 0 & 1 & 1 & 3\\ 0 & 3 & 4 & -1 \end {bmatrix} \] \(R_{3}\rightarrow R_{3}-3R_{2}\)\[\begin {bmatrix} 1 & 1 & 0 & 1\\ 0 & 1 & 1 & 3\\ 0 & 0 & 1 & -10 \end {bmatrix} \] The above is Echelon form. Hence the system becomes\[\begin {bmatrix} 1 & 1 & 0\\ 0 & 1 & 1\\ 0 & 0 & 1 \end {bmatrix}\begin {bmatrix} c_{1}\\ c_{2}\\ c_{3}\end {bmatrix} =\begin {bmatrix} 1\\ 3\\ -10 \end {bmatrix} \] From last row, \(c_{3}=-10\). From second row \(c_{2}+c_{3}=3\) or \(c_{2}=13\). From first row \(c_{1}+c_{2}=1\). Hence \(c_{1}=-12\). Therefore\[\begin {bmatrix} c_{1}\\ c_{2}\\ c_{3}\end {bmatrix} =\begin {bmatrix} -12\\ 13\\ -10 \end {bmatrix} \] Substituting these values back in general solution (1) gives the solution that satisfies these initial conditions as\begin {align*} y\left ( x\right ) & =c_{1}e^{x}+c_{2}e^{2x}+c_{3}xe^{2x}\\ & =-12e^{x}+13e^{2x}-10xe^{2x} \end {align*}

2.6.4 Problem 19 section 5.2

In Problems 13 through 20, a third-order homogeneous linear equation and three linearly independent solutions are given. Find a particular solution satisfying the given initial conditions.\begin {align*} x^{3}y^{\prime \prime \prime }-3x^{2}y^{\prime \prime }+6xy^{\prime }-6y & =0\\ y_{1} & =x\\ y_{2} & =x^{2}\\ y_{3} & =x^{3} \end {align*}

I.C. are

\(y\left ( 1\right ) =6,y^{\prime }\left ( 1\right ) =14,y^{\prime \prime }\left ( 1\right ) =22\)

Solution

The general solution is\begin {align} y\left ( x\right ) & =c_{1}y_{2}+c_{2}y_{2}+c_{3}y_{3}\nonumber \\ & =c_{1}x+c_{2}x^{2}+c_{3}x^{3}\tag {1} \end {align}

At \(y\left ( 1\right ) =0\) the above becomes\begin {equation} 6=c_{1}+c_{2}+c_{3}\tag {2} \end {equation} Taking derivative of (1) gives\[ y^{\prime }\left ( x\right ) =c_{1}+2c_{2}x+3c_{3}x^{2}\] At \(y^{\prime }\left ( 1\right ) =14\) the above becomes\begin {equation} 14=c_{1}+2c_{2}+3c_{3}\tag {3} \end {equation} Taking derivative of \(y^{\prime }\left ( x\right ) \) gives\[ y^{\prime \prime }\left ( x\right ) =2c_{2}+6c_{3}x \] At \(y^{\prime \prime }\left ( 1\right ) =22\) the above becomes\begin {equation} 22=2c_{2}+6c_{3}\tag {4} \end {equation} Equations (2,3,4) are now solved for \(c_{1},c_{2},c_{3}\)\[\begin {bmatrix} 1 & 1 & 1\\ 1 & 2 & 3\\ 0 & 2 & 6 \end {bmatrix}\begin {bmatrix} c_{1}\\ c_{2}\\ c_{3}\end {bmatrix} =\begin {bmatrix} 6\\ 14\\ 22 \end {bmatrix} \] Augmented matrix\[\begin {bmatrix} 1 & 1 & 1 & 6\\ 1 & 2 & 3 & 14\\ 0 & 2 & 6 & 22 \end {bmatrix} \] \(R_{2}\rightarrow R_{2}-R_{1}\)\[\begin {bmatrix} 1 & 1 & 1 & 6\\ 0 & 1 & 2 & 8\\ 0 & 2 & 6 & 22 \end {bmatrix} \] \(R_{3}\rightarrow R_{3}-2R_{2}\)\[\begin {bmatrix} 1 & 1 & 1 & 6\\ 0 & 1 & 2 & 8\\ 0 & 0 & 2 & 6 \end {bmatrix} \] The above is Echelon form. Hence the system becomes\[\begin {bmatrix} 1 & 1 & 1\\ 0 & 1 & 2\\ 0 & 0 & 2 \end {bmatrix}\begin {bmatrix} c_{1}\\ c_{2}\\ c_{3}\end {bmatrix} =\begin {bmatrix} 6\\ 8\\ 6 \end {bmatrix} \] From last row, \(2c_{3}=6\) or \(c_{3}=3\). From second row \(c_{2}+2c_{3}=8\) or \(c_{2}=8-2\left ( 3\right ) =2\). From first row \(c_{1}+c_{2}+c_{3}=6\). Hence \(c_{1}=6-2-3=1\). Therefore\[\begin {bmatrix} c_{1}\\ c_{2}\\ c_{3}\end {bmatrix} =\begin {bmatrix} 1\\ 2\\ 3 \end {bmatrix} \] Substituting these values back in general solution (1) gives the solution that satisfies these initial conditions as\begin {align*} y\left ( x\right ) & =c_{1}x+c_{2}x^{2}+c_{3}x^{3}\\ & =x+2x^{2}+3x^{3} \end {align*}

2.6.5 Problem 24 section 5.2

In Problems 21 through 24, a nonhomogeneous differential equation, a complementary solution \(y_{c}\), and a particular solution

\(y_{p}\) are given. Find a solution satisfying the given initial conditions.\begin {align*} y^{\prime \prime }-2y^{\prime }+2y & =2x\\ y_{c} & =c_{1}e^{x}\cos x+c_{2}e^{x}\sin x\\ y_{p} & =x+1 \end {align*}

I.C. are

\(y\left ( 0\right ) =4,y^{\prime }\left ( 0\right ) =8\)

Solution

The general solution is\begin {align} y\left ( x\right ) & =y_{c}+y_{p}\nonumber \\ & =c_{1}e^{x}\cos x+c_{2}e^{x}\sin x+x+1 \tag {1} \end {align}

At \(y\left ( 0\right ) =4\) the above becomes (using \(e^{0}=1,\cos 0=1,\sin 0=0\))\begin {equation} 4=c_{1}+1 \tag {2} \end {equation} Taking derivative of (1) gives\[ y^{\prime }\left ( x\right ) =c_{1}\left ( e^{x}\cos x-e^{x}\sin x\right ) +c_{2}e^{x}\cos x+1 \] At \(y^{\prime }\left ( 0\right ) =8\) the above becomes\begin {align} 8 & =c_{1}\left ( 1-0\right ) +c_{2}+1\nonumber \\ 8 & =c_{1}+c_{2}+1 \tag {3} \end {align}

We have two equations (2,3) to solve for \(c_{1},c_{2}\). From (3) we see that \(c_{1}=3\). Hence from (3) \(8=3+c_{2}+1\) or \(c_{2}=4\). Therefore the solution in (1) becomes\begin {align*} y\left ( x\right ) & =c_{1}e^{x}\cos x+c_{2}e^{x}\sin x+x+1\\ & =3e^{x}\cos x+4e^{x}\sin x+x+1\\ & =e^{x}\left ( 3\cos x+4\sin x\right ) +x+1 \end {align*}

2.6.6 Problem 8 section 5.3

Find the general solutions of the differential equations in Problems 1 through 20.\[ y^{\prime \prime }-6y^{\prime }+13y=0 \] Solution This is second order with constant coefficients homogeneous ODE. In standard form the ODE is \[ Ay^{\prime \prime }(x)+By^{\prime }(x)+Cy(x)=0 \] Where here we see that \(A=1,B=-6,C=13\).

Let the solution be \(y\left ( x\right ) =e^{\lambda x}\). Substituting this into the ODE gives \begin {equation} \lambda ^{2}e^{\lambda x}-6\lambda e^{\lambda x}+13e^{\lambda x}=0 \tag {1} \end {equation}

Since \(e^{\lambda x}\neq 0\), then dividing Eq. (1) throughout by\(e^{\lambda x}\) results in \begin {equation} \lambda ^{2}-6\lambda +13=0 \tag {2} \end {equation}

Eq. (2) is the characteristic equation of the ODE. We need to determine its roots to find the general solution. Using the quadratic formula \[ \lambda _{1,2}=\frac {-B}{2A}\pm \frac {1}{2A}\sqrt {B^{2}-4AC}\] Substituting \(A=1,B=-6,C=13\) into the above gives \begin {align*} \lambda _{1,2} & =\frac {6}{(2)\left ( 1\right ) }\pm \frac {1}{(2)\left ( 1\right ) }\sqrt {-6^{2}-(4)\left ( 1\right ) \left ( 13\right ) }\\ & =3\pm 2i \end {align*}

Hence \begin {align*} \lambda _{1} & =3+2i\\ \lambda _{2} & =3-2i \end {align*}

Since roots are complex conjugate of each others, then let the roots be \[ \lambda _{1,2}=\alpha \pm i\beta \] Where \(\alpha =3\) and \(\beta =2\). Therefore the final solution, when using Euler relation, can be written as \[ y\left ( x\right ) =e^{\alpha x}\left ( c_{1}\cos (\beta x)+c_{2}\sin (\beta x)\right ) \] Which becomes \[ y\left ( x\right ) =e^{3x}\left ( c_{1}\cos \left ( 2x\right ) +c_{2}\sin \left ( 2x\right ) \right ) \]

2.6.7 Problem 11 section 5.3

Find the general solutions of the differential equations in Problems 1 through 20.\[ y^{\left ( 4\right ) }\left ( x\right ) -8y^{\left ( 3\right ) }+16y^{\prime \prime }=0 \] Solution

We start by writing the characteristic equation of the ODE \[ \lambda ^{4}-8\lambda ^{3}+16\lambda ^{2}=0 \] We now solve for the roots of the above equation. Writing the above as\[ \lambda ^{2}\left ( \lambda ^{2}-8\lambda +16\right ) =0 \] We see that \(\lambda ^{2}=0\) gives \(\lambda =0\) with multiplicity \(2\,\). The equation \(\lambda ^{2}-8\lambda +16=0\) can be factored to \(\left ( \lambda -4\right ) \left ( \lambda -4\right ) =0\). Therefor \(\lambda =4\) with multiplicity \(2\).

Hence the roots are\begin {align*} \lambda _{1} & =0\\ \lambda _{2} & =0\\ \lambda _{3} & =4\\ \lambda _{4} & =4 \end {align*}

This table summarizes the result




root multiplicity type of root



\(0\) \(2\) real root



\(4\) \(2\) real root



For a real root \(\lambda \) with multiplicity one, we obtain a basis solution of the form \(e^{\lambda x}\) and real root \(\lambda \) with multiplicity two we obtain basis solutions \(\left \{ e^{\lambda x},xe^{\lambda x}\right \} \). Therefore the solution is\begin {align*} y\left ( x\right ) & =c_{2}e^{\lambda _{1}x}+c_{2}xe^{\lambda _{1}x}+c_{2}e^{\lambda _{3}x}+c_{2}xe^{\lambda _{3}x}\\ & =c_{2}+c_{2}x+c_{2}e^{4x}+c_{2}xe^{4x} \end {align*}

2.6.8 Problem 14 section 5.3

Find the general solutions of the differential equations in Problems 1 through 20.\[ y^{\left ( 4\right ) }\left ( x\right ) +3y^{\prime \prime }-4y=0 \] Solution

We start by writing the characteristic equation \[ \lambda ^{4}+3\lambda ^{2}-4=0 \] Let \[ z=\lambda ^{2}\] The characteristic becomes\[ z^{2}+3z-4=0 \] Factoring the above gives\[ \left ( z+4\right ) \left ( z-1\right ) =0 \] Hence \(z=-4,z=1\). When \(z=-4\), then \(\lambda =\pm \sqrt {-4}=\pm 2i\). And when \(z=1\), then \(\lambda =\pm \sqrt {1}=\pm 1\). Therefore the roots are

\begin {align*} \lambda _{1} & =1\\ \lambda _{2} & =-1\\ \lambda _{3} & =2i\\ \lambda _{4} & =-2i \end {align*}

This table summarizes the result




root multiplicity type of root



\(-1\) \(1\) real root



\(1\) \(1\) real root



\(\pm 2 i\) \(1\) complex conjugate root



For a real root \(\lambda \) with multiplicity one, we obtain a basis of the form \(c_{1}e^{\lambda x}\) and for a complex conjugate root of the form \(a\pm ib\) we obtain basis solution of the form \(e^{ax}\left ( c_{1}\cos \left ( bx\right ) +c_{2}\sin \left ( bx\right ) \right ) \). Therefore the final solution, using \(a=0,b=2\) is\[ y\left ( x\right ) =c_{1}e^{-x}+c_{2}e^{x}+c_{3}\cos \left ( 2x\right ) +c_{4}\sin \left ( 2x\right ) \]

2.6.9 Problem 18 section 5.3

Find the general solutions of the differential equations in Problems 1 through 20.\[ y^{\left ( 4\right ) }\left ( x\right ) =16y \] Solution

We start by writing the characteristic equation \[ \lambda ^{4}=16 \] Let\[ z=\lambda ^{2}\] The characteristic becomes\[ z^{2}=16 \] Hence \(z=\pm 4\). When \(z=4\) then \(\lambda =\pm \sqrt {4}=\pm 2\). And when \(z=-4\) then \(\lambda =\pm \sqrt {-4}=\pm 2i\). Hence the roots are\begin {align*} \lambda _{1} & =2\\ \lambda _{2} & =-2\\ \lambda _{3} & =2i\\ \lambda _{4} & =-2i \end {align*}

This table summarizes the result




root multiplicity type of root



\(-2\) \(1\) real root



\(2\) \(1\) real root



\(\pm 2 i\) \(1\) complex conjugate root



As in the earlier problem, we now can write the general solution as\[ y\left ( x\right ) =e^{-2x}c_{1}+c_{2}e^{2x}+c_{3}\cos \left ( 2x\right ) +c_{4}\sin \left ( 2x\right ) \]

2.6.10 Additional problem 1

   2.6.10.1 Part a
   2.6.10.2 Part b
   2.6.10.3 Part c
   2.6.10.4 Part d
   2.6.10.5 Part e
   2.6.10.6 Appendix

Find the general solutions of the differential equations in Problems 1 through 20.\[ y^{\left ( 7\right ) }\left ( x\right ) -2y^{\left ( 6\right ) }+9y^{\left ( 5\right ) }-16y^{\left ( 4\right ) }+24y^{\left ( 3\right ) }-32y^{\prime \prime }+16y^{\prime }=0 \] Solution

2.6.10.1 Part a

The characteristic equation is

\begin {align*} \,r^{7}-2r^{6}+9r^{5}-16r^{4}+24r^{3}-32r^{2}+16r & =0\\ r\left ( r^{6}-2r^{5}+9r^{4}-16r^{3}+24r^{2}-32r+16\right ) & =0 \end {align*}

Hence one root is \(r=0\). And now we need to solve\[ r^{6}-2r^{5}+9r^{4}-16r^{3}+24r^{2}-32r+16=0 \]

2.6.10.2 Part b

Substituting \(r=1\) in the above gives\begin {align*} 1-2+9-16+24-32+16 & =0\\ 0 & =0 \end {align*}

Therefore \(\left ( r-1\right ) \) is a factor. Doing long division (do not know how type polynomial division in Latex, please see scanned hand solution in appendix of this problem).\[ \frac {r^{6}-2r^{5}+9r^{4}-16r^{3}+24r^{2}-32r+16}{\left ( r-1\right ) }=r^{5}-r^{4}+8r^{3}-8r^{2}+16r-16 \] Hence \[ r^{6}-2r^{5}+9r^{4}-16r^{3}+24r^{2}-32r+16=\left ( r-1\right ) \left ( r^{5}-r^{4}+8r^{3}-8r^{2}+16r-16\right ) \] Substituting \(r=1\) in \(\left ( r^{5}-r^{4}+8r^{3}-8r^{2}+16r-18\right ) \) gives\[ r^{5}-r^{4}+8r^{3}-8r^{2}+16r-18\rightarrow 1-1+8-8+16-16=0 \] Hence \(\left ( r-1\right ) \) is a factor of \(\left ( r^{5}-r^{4}+8r^{3}-8r^{2}+16r-16\right ) \). Therefore we now need to do long division\[ \frac {r^{5}-r^{4}+8r^{3}-8r^{2}+16r-16}{\left ( r-1\right ) }=r^{4}+8r^{2}+16 \] Hence now we have \[ r^{6}-2r^{5}+9r^{4}-16r^{3}+24r^{2}-32r+16=\left ( r-1\right ) \left ( r-1\right ) \left ( r^{4}+8r^{2}+16\right ) \]

2.6.10.3 Part c

Looking at \(r^{4}+8r^{2}+16=0\), let \(z=r^{2}\). Therefore \(r^{4}+8r^{2}+16\) becomes \(z^{2}+8z+16=0\,\), This can be factored to \(\left ( z+4\right ) \left ( z+4\right ) =0\). Hence roots are \(z=-4\) which is double root.

2.6.10.4 Part d

Therefore when \(z=-4\) then \(r=\pm \sqrt {-4}=\pm 2i\) with multiplicity \(2\) since \(z=-4\) is double root. Therefore the final factorization is\[ r^{6}-2r^{5}+9r^{4}-16r^{3}+24r^{2}-32r+16=\left ( r-1\right ) \left ( r-1\right ) \left ( r-2i\right ) \left ( r+2i\right ) \left ( r-2i\right ) \left ( r+2i\right ) \]

2.6.10.5 Part e

This table summarizes the result




root multiplicity type of root



\(0\) \(1\) real root



\(1\) \(2\) real root



\(\pm 2i\) \(2\) complex conjugate



Now we are above to write down the general solution.\begin {align*} y\left ( x\right ) & =c_{1}e^{0x}+\left ( c_{2}e^{x}+c_{3}xe^{x}\right ) +\left ( c_{4}e^{2ix}+c_{5}xe^{2ix}\right ) +\left ( c_{6}e^{-2ix}+c_{7}xe^{-2ix}\right ) \\ & =c_{1}+\left ( c_{2}e^{x}+c_{3}xe^{x}\right ) +\left ( c_{4}e^{2ix}+c_{5}xe^{2ix}\right ) +\left ( c_{6}e^{-2ix}+c_{7}xe^{-2ix}\right ) \\ & =c_{1}+\left ( c_{2}e^{x}+c_{3}xe^{x}\right ) +\left ( c_{4}e^{2ix}+c_{6}e^{-2ix}\right ) +x\left ( c_{5}e^{2ix}+c_{7}e^{-2ix}\right ) \end {align*}

We see the above has \(7\) terms. But using Euler relation, we can write \(\left ( e^{2ix}+e^{-2ix}\right ) \) using trig functions. The above becomes

\[ y\left ( x\right ) =c_{1}+\left ( c_{2}e^{x}+c_{3}xe^{x}\right ) +\left ( c_{4}\cos 2x+c_{5}\sin 2x\right ) +x\left ( c_{6}\cos 2x+c_{7}\sin 2x\right ) \]

(constants of integrations kept the same as originally for simplicity, since it does not matter as these are found from initial conditions if given).

2.6.10.6 Appendix

pict
Figure 2.8:First long division

pict
Figure 2.9:Second long division

2.6.11 key solution for HW 6

PDF