2.1 HW 1

  2.1.1 Problem 1.8a
  2.1.2 Problem 1.7
  2.1.3 Problem 1.13
  2.1.4 Problem 1.20
  2.1.5 Problem 1.27b
  2.1.6 Problem 2.1.6
  2.1.7 Problem 2.2.2
  2.1.8 Problem 2.2.3
  2.1.9 Problem 2.2.5
  2.1.10 Problem 2.2.9
  2.1.11 Key solution for HW 1
PDF (letter size)
PDF (legal size)

2.1.1 Problem 1.8a

Find all quadratic polynomial solutions of the 3D Laplace equation \(\frac{\partial ^{2}u}{\partial x^{2}}+\frac{\partial ^{2}u}{\partial y^{2}}+\frac{\partial ^{2}u}{\partial z^{2}}=0\)

Solution

A quadratic polynomial in variables \(x,y,z\) is \begin{equation} u=a_{1}+a_{2}x+a_{3}y+a_{4}z+a_{5}x^{2}+a_{6}y^{2}+a_{7}z^{2}+a_{8}xy+a_{9}xz+a_{10}yz \tag{1} \end{equation} Hence \(u_{x}=a_{2}+2a_{5}x+a_{8}y+a_{9}z\) which implies that \(u_{xx}=2a_{5}\). Similarly \(u_{y}=a_{3}+2a_{6}y+a_{8}x+a_{10}z\), therefore \(u_{yy}=2a_{6}\). And finally \(u_{z}=a_{4}+2a_{7}z+a_{9}x+a_{10}y\) and \(u_{zz}=2a_{7}\). Substituting these results in the Laplace equation gives above result in\begin{align*} 2a_{5}+2a_{6}+2a_{7} & =0\\ a_{5}+a_{6}+a_{7} & =0 \end{align*}

Therefore \(a_{5}=-\left ( a_{6}+a_{7}\right ) \). Using this relation back in (1) gives\begin{align*} u & =a_{1}+a_{2}x+a_{3}y+a_{4}z-\left ( a_{6}+a_{7}\right ) x^{2}+a_{6}y^{2}+a_{7}z^{2}+a_{8}xy+a_{9}xz+a_{10}yz\\ & =a_{1}+a_{2}x+a_{3}y+a_{4}z+a_{6}\left ( -x^{2}+y^{2}\right ) +a_{7}\left ( -x^{2}+z^{2}\right ) +a_{8}xy+a_{9}xz+a_{10}yz \end{align*}

Which can be written as\[ u\left ( x,y,z\right ) =A_{1}+A_{2}x+A_{3}y+A_{4}z+A_{5}\left ( y^{2}-x^{2}\right ) +A_{6}\left ( z^{2}-x^{2}\right ) +A_{7}xy+A_{8}xz+A_{9}yz \]

2.1.2 Problem 1.7

Find all real solutions to 2D Laplace equation \(u_{xx}+u_{yy}=0\) of the form \(u=\log \left ( p\left ( x,y\right ) \right ) \) where \(p\left ( x,y\right ) \) is a quadratic polynomial.

Solution

A quadratic polynomial \(p\left ( x,y\right ) \) in variables \(x,y\) is\[ p\left ( x,y\right ) =a_{1}+a_{2}x+a_{3}y+a_{4}x^{2}+a_{5}y^{2}+a_{6}xy \] Therefore\[ u\left ( x,y\right ) =\log \left ( a_{1}+a_{2}x+a_{3}y+a_{4}x^{2}+a_{5}y^{2}+a_{6}xy\right ) \] Hence \[ u_{x}=\frac{a_{2}+2a_{4}x+a_{6}y}{p\left ( x,y\right ) }\] and \begin{equation} u_{xx}=\frac{2a_{4}}{p\left ( x,y\right ) }-\frac{\left ( a_{2}+2a_{4}x+a_{6}y\right ) ^{2}}{p\left ( x,y\right ) ^{2}} \tag{1} \end{equation} Similarly\[ u_{y}=\frac{a_{3}+2a_{5}y+a_{6}x}{p\left ( x,y\right ) }\] And\begin{equation} u_{yy}=\frac{2a_{5}}{p\left ( x,y\right ) }-\frac{\left ( a_{3}+2a_{5}y+a_{6}x\right ) ^{2}}{p\left ( x,y\right ) ^{2}} \tag{2} \end{equation} Substituting (1,2) into \(u_{xx}+u_{yy}=0\) gives\begin{align*} \left ( \frac{2a_{4}}{p\left ( x,y\right ) }-\frac{\left ( a_{2}+2a_{4}x+a_{6}y\right ) ^{2}}{p\left ( x,y\right ) ^{2}}\right ) +\left ( \frac{2a_{5}}{p\left ( x,y\right ) }-\frac{\left ( a_{3}+2a_{5}y+a_{6}x\right ) ^{2}}{p\left ( x,y\right ) ^{2}}\right ) & =0\\ 2a_{4}-\frac{\left ( a_{2}+2a_{4}x+a_{6}y\right ) ^{2}}{p\left ( x,y\right ) }+2a_{5}-\frac{\left ( a_{3}+2a_{5}y+a_{6}x\right ) ^{2}}{p\left ( x,y\right ) } & =0\\ 2a_{4}+2a_{5}-\frac{\left ( a_{2}+2a_{4}x+a_{6}y\right ) ^{2}+\left ( a_{3}+2a_{5}y+a_{6}x\right ) ^{2}}{p\left ( x,y\right ) } & =0 \end{align*}

Or\[ \left ( 2a_{4}+2a_{5}\right ) p\left ( x,y\right ) =\left ( a_{2}+2a_{4}x+a_{6}y\right ) ^{2}+\left ( a_{3}+2a_{5}y+a_{6}x\right ) ^{2}\] But \(p\left ( x,y\right ) =a_{1}+a_{2}x+a_{3}y+a_{4}x^{2}+a_{5}y^{2}+a_{6}xy\). Hence the above becomes\[ \left ( 2a_{4}+2a_{5}\right ) \left ( a_{1}+a_{2}x+a_{3}y+a_{4}x^{2}+a_{5}y^{2}+a_{6}xy\right ) =\left ( a_{2}+2a_{4}x+a_{6}y\right ) ^{2}+\left ( a_{3}+2a_{5}y+a_{6}x\right ) ^{2}\] Expanding and comparing coefficients gives

\begin{multline*} 2x^{2}a_{4}^{2}+2x^{2}a_{4}a_{5}+2a_{6}a_{4}xy+2a_{6}a_{5}xy+2a_{2}a_{4}x+2a_{2}xa_{5}+2y^{2}a_{4}a_{5}+2y^{2}a_{5}^{2}+2a_{3}a_{4}y+2a_{3}a_{5}y+2a_{1}a_{4}+2a_{1}a_{5}=\\ 4x^{2}a_{4}^{2}+x^{2}a_{6}^{2}+4a_{4}a_{6}xy+4a_{5}a_{6}xy+4xa_{2}a_{4}+2a_{3}a_{6}x+4y^{2}a_{5}^{2}+y^{2}a_{6}^{2}+2a_{2}a_{6}y+4a_{3}a_{5}y+a_{2}^{2}+a_{3}^{2} \end{multline*} Simplifying\begin{multline*} 2a_{4}a_{5}x^{2}+2a_{2}a_{5}x+2a_{4}a_{5}y^{2}+2a_{3}a_{4}y+2a_{1}a_{4}+2a_{1}a_{5}=\\ 2x^{2}a_{4}^{2}+a_{6}^{2}x^{2}+2a_{4}a_{6}xy+2a_{5}a_{6}xy+2a_{2}a_{4}x+2a_{3}a_{6}x+2a_{5}^{2}y^{2}+a_{6}^{2}y^{2}+2a_{2}a_{6}y+2a_{3}a_{5}y+a_{2}^{2}+a_{3}^{2} \end{multline*} Comparing coefficients of terms that contain no \(x,y\) and coefficients of \(x,y,xy,x^{2},y^{2}\) gives the following equations in order\begin{align*} 2a_{1}a_{4}+2a_{1}a_{5} & =a_{2}^{2}+a_{3}^{2}\\ 2a_{2}a_{5} & =2a_{2}a_{4}+2a_{3}a_{6}\\ 2a_{3}a_{4} & =2a_{2}a_{6}+2a_{3}a_{5}\\ 0 & =4a_{4}a_{6}\\ 2a_{4}a_{5} & =2a_{4}^{2}+a_{6}^{2}\\ 2a_{4}a_{5} & =2a_{5}^{2}+a_{6}^{2} \end{align*}

Equation \(0=4a_{4}a_{6}\) above implies that \(a_{4}=0\) or \(a_{6}=0\) or both are zero. But if both are zero, there is no solution. On the other hand, if \(a_{4}=0,\) then this also leads to no solution as all equations reduce to \(0=0\). Therefore only choice left is \(a_{6}=0\). Now the above equations become\begin{align*} 2a_{1}a_{4}+2a_{1}a_{5} & =a_{2}^{2}+a_{3}^{2}\\ 2a_{2}a_{5} & =2a_{2}a_{4}\\ 2a_{3}a_{4} & =2a_{3}a_{5}\\ 0 & =0\\ 2a_{4}a_{5} & =2a_{4}^{2}\\ 2a_{4}a_{5} & =2a_{5}^{2} \end{align*}

Or\begin{align*} 2a_{1}a_{4}+2a_{1}a_{5} & =a_{2}^{2}+a_{3}^{2}\\ a_{5} & =a_{4}\\ a_{4} & =a_{5}\\ 0 & =0\\ a_{5} & =a_{4}\\ a_{4} & =a_{5} \end{align*}

Hence\begin{align} a_{4} & =a_{5}\tag{3}\\ a_{6} & =0\tag{4}\\ 2a_{1}a_{4}+2a_{1}a_{5} & =a_{2}^{2}+a_{3}^{2}\nonumber \end{align}

Since \(a_{4}=a_{5}\) then\begin{align} 2a_{1}a_{5}+2a_{1}a_{5} & =a_{2}^{2}+a_{3}^{2}\nonumber \\ a_{5} & =\frac{a_{2}^{2}+a_{3}^{2}}{2a_{1}} \tag{5} \end{align}

Using (3,4,5) in \(p\left ( x,y\right ) =a_{1}+a_{2}x+a_{3}y+a_{4}x^{2}+a_{5}y^{2}+a_{6}xy\) gives\begin{align*} p\left ( x,y\right ) & =a_{1}+a_{2}x+a_{3}y+a_{5}x^{2}+a_{5}y^{2}\\ & =a_{1}+a_{2}x+a_{3}y+a_{5}\left ( x^{2}+y^{2}\right ) \\ & =a_{1}+a_{2}x+a_{3}y+\frac{a_{2}^{2}+a_{3}^{2}}{2a_{1}}\left ( x^{2}+y^{2}\right ) \end{align*}

Only three arbitrary constants are needed. Let \(a_{1}=a,a_{2}=b,a_{3}=c\) the above becomes\[ p\left ( x,y\right ) =a+bx+cy+\frac{b^{2}+c^{2}}{2a}\left ( x^{2}+y^{2}\right ) \] And the solution becomes\[ u\left ( x,y\right ) =\log \left ( a+bx+cy+\frac{b^{2}+c^{2}}{2a}\left ( x^{2}+y^{2}\right ) \right ) \]

2.1.3 Problem 1.13

Find all solutions \(u=f\left ( r\right ) \) of the 3D Laplace equation \(u_{xx}+u_{yy}+u_{zz}=0\) that depends only on radial coordinates \(r=\sqrt{x^{2}+y^{2}+z^{2}}\)

Solution

The Laplacian in 3D in spherical coordinates is\[ \nabla ^{2}u\left ( r,\theta ,\phi \right ) =u_{rr}+\frac{2}{r}u_{r}+\frac{1}{r^{2}}\left ( \frac{\cos \theta }{\sin \theta }u_{\theta }+u_{\theta \theta }\right ) +\frac{1}{r^{2}\sin ^{2}\theta }u_{\phi \phi }\] The above shows that the terms that depend only on \(r\) makes the laplacian \[ \nabla ^{2}u\left ( r\right ) =u_{rr}+\frac{2}{r}u_{r}\] Hence the PDE \(\nabla ^{2}u\left ( r\right ) =0\) becomes an ODE now since there is only one dependent variable giving\[ u^{\prime \prime }\left ( r\right ) +\frac{2}{r}u^{\prime }\left ( r\right ) =0 \] Let \(v=u^{\prime }\left ( r\right ) \) and the above becomes\[ v^{\prime }\left ( r\right ) +\frac{2}{r}v\left ( r\right ) =0 \] This is linear first order ODE. The integrating factor is \(I=e^{\int \frac{2}{r}dr}=e^{2\ln r}=r^{2}\). Therefore the above becomes \(\frac{d}{dr}\left ( vr^{2}\right ) =0\) or \(vr^{2}=C_{1}\) or \(v\left ( r\right ) =\frac{C_{1}}{r^{2}}\). Therefore\begin{align*} u^{\prime } & =\frac{C_{1}}{r^{2}}\\ du & =\frac{C_{1}}{r^{2}}dr \end{align*}

Integrating gives the solution\[ u=-\frac{C_{1}}{r}+C_{2}\] The above is the required solution. Hence \[ \fbox{$f\left ( r\right ) =-\frac{C_1}{r}+C_2$}\] Where \(C_{1},C_{2}\) are arbitrary constants.

2.1.4 Problem 1.20

   2.1.4.1 Part (a)
   2.1.4.2 Part (b)

The displacement \(u\left ( t,x\right ) \) of a forced violin string is modeled by the PDE \(u_{tt}=4u_{xx}+F\left ( t,x\right ) \). When the string is subjected to the external force \(F\left ( t,x\right ) =\cos x\), the solution is \(u\left ( t,x\right ) =\cos \left ( x-2t\right ) +\frac{1}{4}\cos x\), while when \(F\left ( t,x\right ) =\sin x\), the solution is \(u\left ( t,x\right ) =\sin \left ( x-2t\right ) +\frac{1}{4}\sin x\). Find a solution when the forcing function is (a) \(\cos x-5\sin x\), (b) \(\sin \left ( x-3\right ) \)

Solution

2.1.4.1 Part (a)

Since the PDE is linear, superposition can be used. When the input is \(F\left ( t,x\right ) =\cos x-5\sin x\) then the solution is\begin{align*} u\left ( t,x\right ) & =\left ( \cos \left ( x-2t\right ) +\frac{1}{4}\cos x\right ) -5\left ( \sin \left ( x-2t\right ) +\frac{1}{4}\sin x\right ) \\ & =\cos \left ( x-2t\right ) +\frac{1}{4}\cos x-5\sin \left ( x-2t\right ) -\frac{5}{4}\sin x \end{align*}

2.1.4.2 Part (b)

Since the PDE is linear, superposition can be used. When the input is \(F\left ( t,x\right ) =\sin \left ( x-3\right ) \) then the solution same as when the input is \(\sin x\) but shifted by \(3\). Hence\[ u\left ( t,x\right ) =\sin \left ( \left ( x-3\right ) -2t\right ) +\frac{1}{4}\sin \left ( x-3\right ) \]

2.1.5 Problem 1.27b

Solve the following inhomogeneous linear ODE \(5u^{\prime \prime }-4u^{\prime }+4u=e^{x}\cos x\)

Solution

First the homogeneous solution \(u_{h}\) is found, then a particular solution \(u_{p}\) is found. The general solution will be the sum of both \(u=u_{h}+u_{p}\). Since this is a constant coefficient ODE, the characteristic equation is \(5\lambda ^{2}-4\lambda +4=0\). The roots are \(\lambda _{1}=\frac{2}{5}+\frac{4}{5}i,\lambda _{1}=\frac{2}{5}-\frac{4}{5}i\), which implies the solution is \[ u_{h}\left ( x\right ) =e^{\frac{2}{5}x}\left ( c_{1}\cos \left ( \frac{4}{5}x\right ) +c_{2}\sin \left ( \frac{4}{5}x\right ) \right ) \] Using the method of undetermined coefficients, and since the forcing function is \(e^{x}\cos x\), then let \begin{equation} u_{p}=Ae^{x}\left ( B\cos x+C\sin x\right ) \tag{1} \end{equation} Hence\begin{align} u_{p}^{\prime } & =Ae^{x}\left ( B\cos x+C\sin x\right ) +Ae^{x}\left ( -B\sin x+C\cos x\right ) \tag{2}\\ u_{p}^{\prime \prime } & =Ae^{x}\left ( B\cos x+C\sin x\right ) +Ae^{x}\left ( -B\sin x+C\cos x\right ) +Ae^{x}\left ( -B\sin x+C\cos x\right ) +Ae^{x}\left ( -B\cos x-C\sin x\right ) \nonumber \\ & =Ae^{x}\left ( B\cos x+C\sin x-B\sin x+C\cos x-B\sin x+C\cos x-B\cos x-C\sin x\right ) \nonumber \\ & =Ae^{x}\left ( -B\sin x+C\cos x-B\sin x+C\cos x\right ) \nonumber \\ & =Ae^{x}\left ( -2B\sin x+2C\cos x\right ) \tag{3} \end{align}

Substituting (1,2,3) back into the original ODE gives\begin{align*} 5Ae^{x}\left ( -2B\sin x+2C\cos x\right ) -4\left ( Ae^{x}\left ( B\cos x+C\sin x\right ) +Ae^{x}\left ( -B\sin x+C\cos x\right ) \right ) +4Ae^{x}\left ( B\cos x+C\sin x\right ) & =e^{x}\cos x\\ Ae^{x}\left ( -10B\sin x+10C\cos x\right ) -Ae^{x}\left ( 4B\cos x+4C\sin x\right ) -Ae^{x}\left ( -4B\sin x+4C\cos x\right ) +Ae^{x}\left ( 4B\cos x+4C\sin x\right ) & =e^{x}\cos x\\ Ae^{x}\left ( -10B\sin x+10C\cos x-4B\cos x-4C\sin x+4B\sin x-4C\cos x+4B\cos x+4C\sin x\right ) & =e^{x}\cos x \end{align*}

Hence\[ Ae^{x}\left ( 6C\cos x-6B\sin x\right ) =e^{x}\cos x \] Comparing coefficients shows that \begin{align*} A & =1\\ B & =0\\ C & =\frac{1}{6} \end{align*}

Hence from (1) \[ u_{p}=e^{x}\frac{\sin x}{6}\] Therefore the general solution is \begin{align*} u\left ( x\right ) & =u_{h}\left ( x\right ) +u_{p}\left ( x\right ) \\ & =e^{\frac{2}{5}x}\left ( c_{1}\cos \left ( \frac{4}{5}x\right ) +c_{2}\sin \left ( \frac{4}{5}x\right ) \right ) +e^{x}\frac{\sin x}{6} \end{align*}

2.1.6 Problem 2.1.6

Solve the PDE \(\frac{\partial ^{2}u}{\partial x\partial y}=0\) for \(u\left ( x,y\right ) \)

Solution

Integrating once w.r.t \(x\) gives\[ \frac{\partial u}{\partial y}=F\left ( y\right ) \] Where \(F\left ( y\right ) \) acts as the constant of integration, but since this is a PDE, it becomes an arbitrary function of \(y\) only. Integrating the above again w.r.t. \(y\) gives\[ u=\int F\left ( y\right ) dy+G\left ( x\right ) \] Where \(G\left ( x\right ) \) is an arbitrary function of \(x\) only. If we let \(\int F\left ( y\right ) dy=H\left ( y\right ) \) where \(H\left ( y\right ) \) is the antiderivative for the indefinite integral which depends on \(y\) only. Then the above can be written as\[ \fbox{$u\left ( x,y\right ) =H\left ( y\right ) +G\left ( x\right ) $}\] To verify, from the above \(\frac{\partial u}{\partial y}=H^{\prime }\left ( y\right ) \) and hence \begin{align*} \frac{\partial ^{2}u}{\partial x\partial y} & =\frac{d}{dx}\left ( H^{\prime }\left ( y\right ) \right ) \\ & =0 \end{align*}

2.1.7 Problem 2.2.2

   2.1.7.1 Part a
   2.1.7.2 Part b
   2.1.7.3 Part c
   2.1.7.4 Part d

Solve the following initial value problems and graph the solutions at \(t=1,2,3\)

a
\(u_{t}-3u_{x}=0,u\left ( 0,x\right ) =e^{-x^{2}}\)
b
\(u_{t}+2u_{x}=0,u\left ( -1,x\right ) =\frac{x}{1+x^{2}}\)
c
\(u_{t}+u_{x}+\frac{1}{2}u=0,u\left ( 0,x\right ) =\arctan \left ( x\right ) \)
d
\(u_{t}-4u_{x}+u=0,u\left ( 0,x\right ) =\frac{1}{1+x^{2}}\)

Solution

2.1.7.1 Part a

Let \(\xi \) be the characteristic variable defined such that \(\xi =x-ct\). Where characteristic lines are given by \(x=x_{0}+ct\). But \(c=-3\) in this problem. Hence characteristic lines are \[ x=x_{0}-3t \] Where \(x_{0}\) means the same as \(x\left ( 0\right ) \), i.e. \(x\left ( t\right ) \) at time \(t=0\). Since \(c=-3\) then \[ \xi =x+3t \] Let \[ u\left ( t,x\right ) \equiv v\left ( t,\xi \right ) \] \(u_{t}-3u_{x}=0\) is now transformed to \(v\left ( t,\xi \right ) \) as follows\begin{align} \frac{\partial u}{\partial t} & =\frac{\partial v}{\partial t}\frac{\partial t}{\partial t}+\frac{\partial v}{\partial \xi }\frac{\partial \xi }{\partial t}\nonumber \\ & =\frac{\partial v}{\partial t}+3\frac{\partial v}{\partial \xi } \tag{1} \end{align}

And\begin{align} \frac{\partial u}{\partial x} & =\frac{\partial v}{\partial t}\frac{\partial t}{\partial x}+\frac{\partial v}{\partial \xi }\frac{\partial \xi }{\partial x}\nonumber \\ & =0+\frac{\partial v}{\partial \xi }\nonumber \\ & =\frac{\partial v}{\partial \xi } \tag{2} \end{align}

Substituting (1,2) in \(u_{t}-3u_{x}=0\) gives the transformed PDE as\begin{align*} \frac{\partial v}{\partial t}+3\frac{\partial v}{\partial \xi }-3\frac{\partial v}{\partial \xi } & =0\\ \frac{\partial v}{\partial t} & =0 \end{align*}

Integrating w.r.t \(\xi \) gives the solution in \(v\left ( t,\xi \right ) \) space as\[ v\left ( t,\xi \right ) =F\left ( \xi \right ) \] Where \(F\left ( \xi \right ) \) is an arbitrary continuous function of \(\xi \). Transforming back to \(u\left ( t,x\right ) \) gives\begin{equation} u\left ( t,x\right ) =F\left ( x+3t\right ) \tag{3} \end{equation} At \(t=0\) the above becomes\[ e^{-x_{0}^{2}}=F\left ( x_{0}\right ) \] This means that (3) becomes (since \(x=x_{0}+ct\) or \(x=x_{0}-3t\) or \(x_{0}=x+3t\))\[ u\left ( t,x\right ) =e^{-\left ( x+3t\right ) ^{2}}\]

2.1.7.2 Part b

\begin{align*} u_{t}+2u_{x} & =0\\ u\left ( -1,x\right ) & =\frac{x}{1+x^{2}} \end{align*}

Let \(\xi \) be the characteristic variable defined such that \(\xi =x-ct\). Where characteristic lines are given by \(x=x_{0}+ct\). But \(c=2\) in this problem. Hence characteristic lines are \[ x=x_{0}+2t \] And\[ \xi =x-2t \] Let \(u\left ( t,x\right ) \equiv v\left ( t,\xi \right ) \). Then \(u_{t}+2u_{x}=0\) is transformed to \(v\left ( t,\xi \right ) \) as was done in part (a) (will not be repeated) which results in\[ \frac{\partial v}{\partial t}=0 \] Integrating w.r.t \(\xi \) gives the solution\[ v\left ( t,\xi \right ) =F\left ( \xi \right ) \] Where \(F\left ( \xi \right ) \) is an arbitrary continuous function of \(\xi \). Transforming back to \(u\left ( t,x\right ) \) results in\begin{equation} u\left ( t,x\right ) =F\left ( x-2t\right ) \tag{3} \end{equation} At \(t=-1\) the above becomes\[ \frac{x_{0}}{1+x_{0}^{2}}=F\left ( x_{0}+2\right ) \] Let \(x_{0}+2=z\). Then \(x_{0}=z-2\). And the above becomes\[ \frac{z-2}{1+\left ( z-2\right ) ^{2}}=F\left ( z\right ) \] This means that (3) becomes\begin{align*} u\left ( t,x\right ) & =\frac{\left ( x-2t\right ) -2}{1+\left ( \left ( x-2t\right ) -2\right ) ^{2}}\\ & =\frac{x-2t-2}{1+\left ( x-2t-2\right ) ^{2}} \end{align*}

2.1.7.3 Part c

\begin{align} u_{t}+u_{x}+\frac{1}{2}u & =0\tag{1}\\ u\left ( 0,x\right ) & =\arctan \left ( x\right ) \nonumber \end{align}

Let \(\xi \) be the characteristic variable defined such that \(\xi =x-ct\). Where characteristic lines are given by \(x=x_{0}+ct\). But \(c=1\) in this problem. Hence characteristic lines are given by solution to \begin{align*} \frac{dx}{dt} & =1\\ x\left ( t\right ) & =x_{0}+t \end{align*}

And\begin{align*} \xi & =x-ct\\ & =x-t \end{align*}

Then \(u_{t}+u_{x}\) are transformed to \(v\left ( t,\xi \right ) \) as was done in part (a) (will not be repeated) which results in\[ u_{t}+u_{x}=\frac{\partial v}{\partial t}\] Substituting the above into (1) gives (where now \(v\) is used in place of \(u\)).\[ \frac{\partial v}{\partial t}+\frac{1}{2}v=0 \] This is now first order ODE since it only depends on \(t\). Therefore \(v^{\prime }+\frac{1}{2}v=0\). This is linear in \(v\). Hence the solution is \(\frac{d}{dt}\left ( ve^{\int \frac{1}{2}dt}\right ) =0\) or \(ve^{\frac{1}{2}t}=F\left ( \xi \right ) \) where \(F\) is arbitrary function of \(\xi \). Hence\[ v\left ( t,\xi \right ) =e^{\frac{-1}{2}t}F\left ( \xi \right ) \] Converting back to \(u\left ( t,x\right ) \) gives\begin{equation} u\left ( t,x\right ) =e^{\frac{-t}{2}}F\left ( x-t\right ) \tag{2} \end{equation} At \(t=0\) the above becomes\[ \arctan \left ( x_{0}\right ) =F\left ( x_{0}\right ) \] From the above then (2) can be written as\[ u\left ( t,x\right ) =e^{\frac{-t}{2}}\arctan \left ( x-t\right ) \]

2.1.7.4 Part d

\begin{align*} u_{t}-4u_{x}+u & =0\\ u\left ( 0,x\right ) & =\frac{1}{1+x^{2}} \end{align*}

Let \(\xi \) be the characteristic variable defined such that \(\xi =x-ct\). Where characteristic lines are given by \(x=x_{0}+ct\). But \(c=-4\) in this problem. Hence characteristic lines are \[ x=x_{0}-4t \] And\[ \xi =x+4t \] Then \(u_{t}-4u_{x}\) are transformed to \(v\left ( t,\xi \right ) \) as was done in part (a) (will not be repeated) which results in\[ u_{t}-4u_{x}=\frac{\partial v}{\partial t}\] Substituting the above into (1) gives (where now \(v\) is used in place of \(u\)).\[ \frac{\partial v}{\partial t}+v=0 \] This is now first order ODE since it only depends on \(t\). Therefore \(v^{\prime }+v=0\). This is linear in \(v\). Hence the solution is \(\frac{d}{dt}\left ( ve^{\int dt}\right ) =0\) or \(ve^{t}=F\left ( \xi \right ) \) where \(F\) is arbitrary function of \(\xi \). Hence\[ v\left ( t,\xi \right ) =e^{-t}F\left ( \xi \right ) \] Converting to \(u\left ( t,x\right ) \) gives\begin{equation} u\left ( t,x\right ) =e^{-t}F\left ( x+4t\right ) \tag{2} \end{equation} At \(u\left ( 0,x\right ) =\frac{1}{1+x^{2}}\) the above becomes\[ \frac{1}{1+x_{0}^{2}}=F\left ( x_{0}\right ) \] From the above then (2) can be written as\[ u\left ( t,x\right ) =\frac{e^{-t}}{1+\left ( x+4t\right ) ^{2}}\]

2.1.8 Problem 2.2.3

   2.1.8.1 Part b
   2.1.8.2 Part d

Graph some of the characteristic lines for the following equation and write down the formula for the general solution

(b) \(u_{t}+5u_{x}=0\,\), (d) \(u_{t}-4u_{x}+u=0\)

Solution

2.1.8.1 Part b

\[ u_{t}+5u_{x}=0 \]

Let \(\xi \) be the characteristic variable defined such that \(\xi =x-ct\). Where characteristic lines are given by \(x=x_{0}+ct\). But \(c=5\) in this problem. Hence characteristic lines are \begin{equation} \fbox{$x\left ( t\right ) =x_0+5t$} \tag{1} \end{equation} And\[ \xi =x-5t \] Then \(u_{t}-5u_{x}=0\) is transformed to \(v\left ( t,\xi \right ) \) as was done in earlier (will not be repeated) which results in\[ u_{t}-5u_{x}=\frac{\partial v}{\partial t}\] Therefore \(\frac{\partial v}{\partial t}=0\) which has the general solution \(v\left ( t,\xi \right ) =F\left ( \xi \right ) \) where \(F\) is arbitrary function of \(\xi \). Transforming back to \(u\left ( t,x\right ) \) gives\[ \fbox{$u\left ( t,x\right ) =F\left ( x-5t\right ) $}\] On the characteristic lines given by (1) the solution \(u\left ( t,x\right ) \) is constant. The slope of the characteristic lines is \(5\) and intercept is \(x_{0}\). The following is a plot of few lines using different values of \(x_{0}\).

pict
Figure 2.1:Showing some characteristic lines for part b
2.1.8.2 Part d

\[ u_{t}-4u_{x}+u=0 \] Let \(\xi \) be the characteristic variable defined such that \(\xi =x-ct\). Where characteristic lines are given by \(x=x_{0}+ct\). But \(c=-4\) in this problem. Hence characteristic lines are \begin{equation} \fbox{$x\left ( t\right ) =x_0-4t$} \tag{1} \end{equation} And\[ \xi =x+4t \] Then \(u_{t}-4u_{x}\) is transformed to \(v\left ( t,\xi \right ) \) as was done in earlier (will not be repeated) which results in\[ u_{t}-4u_{x}=\frac{\partial v}{\partial t}\] Therefore the original PDE becomes \(\frac{\partial v}{\partial t}+v=0\), where \(u\) is replaced by \(v\). This is linear first order ODE which has the solution \(v\left ( t,\xi \right ) =e^{-t}F\left ( \xi \right ) \) where \(F\) is arbitrary function of \(\xi \). Transforming back to \(u\left ( t,x\right ) \) gives the general solution as\[ u\left ( t,x\right ) =e^{-t}F\left ( x+4t\right ) \] The following is a plot of few characteristic lines \(x=x_{0}-4t\) using different values of \(x_{0}\).

pict
Figure 2.2:Showing some characteristic lines for part d

2.1.9 Problem 2.2.5

Solve \(u_{t}+2u_{x}=\sin x,u\left ( 0,x\right ) =\sin x\)

Solution

Let \(\xi \) be the characteristic variable defined such that \(\xi =x-ct\). Where characteristic lines are given by \(x=x_{0}+ct\). But \(c=2\) in this problem. Hence characteristic lines are \begin{equation} \fbox{$x=x_0+2t$} \tag{1} \end{equation} And\[ \xi =x-2t \] Then \(u_{t}+2u_{x}\) is transformed to \(v\left ( t,\xi \right ) \) as was done in earlier (will not be repeated) which results in\[ u_{t}+2u_{x}=\frac{\partial v}{\partial t}\] Substituting this into the original PDE gives\[ \frac{\partial v\left ( t,\xi \right ) }{\partial t}=\sin \left ( \xi +2t\right ) \] Integrating w.r.t \(t\) gives\begin{align*} v\left ( t,\xi \right ) & =\int \sin \left ( \xi +2t\right ) dt+F\left ( \xi \right ) \\ & =-\frac{\cos \left ( \xi +2t\right ) }{2}+F\left ( \xi \right ) \end{align*}

Transforming back to \(u\left ( t,x\right ) \) gives\begin{align} u\left ( t,x\right ) & =-\frac{\cos \left ( x-2t+2t\right ) }{2}+F\left ( x-2t\right ) \nonumber \\ & =\frac{-1}{2}\cos \left ( x\right ) +F\left ( x-2t\right ) \tag{1} \end{align}

When \(t=0\), \(u\left ( 0,x\right ) =\sin x\), therefore the above becomes\begin{align*} \sin x_{0} & =F\left ( x_{0}\right ) -\frac{1}{2}\cos x_{0}\\ F\left ( x_{0}\right ) & =\sin x_{0}+\frac{1}{2}\cos x_{0} \end{align*}

Therefore the solution (1) becomes\begin{align*} u\left ( t,x\right ) & =\left ( \sin \left ( x-2t\right ) +\frac{1}{2}\cos \left ( x-2t\right ) \right ) -\frac{1}{2}\cos x\\ & =\sin \left ( x-2t\right ) +\frac{1}{2}\cos \left ( x-2t\right ) -\frac{1}{2}\cos x \end{align*}

2.1.10 Problem 2.2.9

   2.1.10.1 Part(a)
   2.1.10.2 Part(b)

(a) Prove that if the initial data is bounded, \(\left \vert f\left ( x\right ) \right \vert \leq M\) for all \(x\in \mathbb{R} \), then the solution to the damped transport equation (2.14) \(u_{t}+cu_{x}+au=0\) with \(a>0\) satisfies \(u\left ( t,x\right ) \rightarrow 0\) as \(t\rightarrow \infty \). (b) Find a solution to (2.14) that is defined for all \(\left ( t,x\right ) \) but does not satisfy \(u\left ( t,x\right ) \rightarrow 0\) as \(t\rightarrow \infty \).

Solution

2.1.10.1 Part(a)

\(u_{t}+cu_{x}+au=0\) is solved to show what is required. Let \(\xi \) be the characteristic variable defined such that \(\xi =x-ct\). Where characteristic lines are given by \(x=x_{0}+ct\). Hence characteristic lines are \begin{equation} x=x_{0}+ct \tag{1} \end{equation} And\[ \xi =x-ct \] Then \(u_{t}+cu_{x}\) is transformed to \(v\left ( t,\xi \right ) \) as was done in earlier (will not be repeated) which results in\[ u_{t}+cu_{x}=\frac{\partial v}{\partial t}\] Substituting this into the original PDE gives\[ \frac{\partial v}{\partial t}+av=0 \] Where \(u\) is replaced by \(v\). This can be viewed as first order linear ODE since it depends on \(t\) only. Its solution is \(v\left ( t,\xi \right ) =e^{-at}F\left ( \xi \right ) \,\) where \(F\) is arbitrary function of \(\xi \). Transforming back to \(u\left ( t,x\right ) \) gives\begin{equation} u\left ( t,x\right ) =e^{-at}F\left ( x-ct\right ) \tag{1} \end{equation} At \(t=0\) initial data is \(f\left ( x\right ) \). Hence the above becomes at \(t=0\)\[ f\left ( x\right ) =F\left ( x\right ) \] Hence (1) now becomes\begin{equation} u\left ( t,x\right ) =e^{-at}f\left ( x-ct\right ) \tag{2} \end{equation} But since \(\left \vert f\left ( x\right ) \right \vert \) is bounded, and since \(a>0\) then \(e^{-at}\rightarrow 0\) as \(t\rightarrow \infty \). Which implies the solution itself \(u\left ( t,x\right ) \) goes to zero as well. This is the reason why initial data needed to be bounded for this to happen.

2.1.10.2 Part(b)

Keeping \(a>0\). If initial data have the form \(f\left ( x\right ) e^{-bx}\) where \(\left \vert b\right \vert >a\), then at \(t=0\) the solution found in (1) becomes\[ f\left ( x_{0}\right ) e^{-bx_{0}}=F\left ( x_{0}\right ) \] Then the solution (2) now becomes, after replacing \(x_{0}\) by \(x-ct\) \begin{align*} u\left ( t,x\right ) & =e^{-at}e^{-b\left ( x-ct\right ) }f\left ( x-ct\right ) \\ & =e^{-at+bct}e^{-bx}f\left ( x-ct\right ) \\ & =e^{\left ( bc-a\right ) t}e^{-bx}f\left ( x-ct\right ) \end{align*}

The problem is asking to show that this does not go to zero for all \(x\in \mathbb{R} \) as \(t\rightarrow \infty \). Since \(\left \vert b\right \vert >a\) then \(bc-a\) is positive quantity (\(c\) is assumed positive)1 .

Therefore \(e^{\left ( bc-a\right ) t}\) will blow up as \(t\rightarrow \infty \). And therefore the whole solution will not go to zero. For any \(x\), no matter how large \(x\) is, a large enough \(t\) can be found to make the product \(e^{\left ( bc-a\right ) t}e^{-bx}\) blow up.

2.1.11 Key solution for HW 1

PDF