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1 Problem 1.8a

Find all quadratic polynomial solutions of the 3D Laplace equation 𝜕2𝑢
𝜕𝑥2 +

𝜕2𝑢
𝜕𝑦2 +

𝜕2𝑢
𝜕𝑧2 = 0

Solution

A quadratic polynomial in variables 𝑥, 𝑦, 𝑧 is

𝑢 = 𝑎1 + 𝑎2𝑥 + 𝑎3𝑦 + 𝑎4𝑧 + 𝑎5𝑥2 + 𝑎6𝑦2 + 𝑎7𝑧2 + 𝑎8𝑥𝑦 + 𝑎9𝑥𝑧 + 𝑎10𝑦𝑧 (1)

Hence 𝑢𝑥 = 𝑎2+2𝑎5𝑥+𝑎8𝑦+𝑎9𝑧 which implies that 𝑢𝑥𝑥 = 2𝑎5. Similarly 𝑢𝑦 = 𝑎3+2𝑎6𝑦+𝑎8𝑥+𝑎10𝑧,
therefore 𝑢𝑦𝑦 = 2𝑎6. And finally 𝑢𝑧 = 𝑎4 + 2𝑎7𝑧 + 𝑎9𝑥 + 𝑎10𝑦 and 𝑢𝑧𝑧 = 2𝑎7. Substituting these
results in the Laplace equation gives above result in

2𝑎5 + 2𝑎6 + 2𝑎7 = 0
𝑎5 + 𝑎6 + 𝑎7 = 0

Therefore 𝑎5 = − (𝑎6 + 𝑎7). Using this relation back in (1) gives

𝑢 = 𝑎1 + 𝑎2𝑥 + 𝑎3𝑦 + 𝑎4𝑧 − (𝑎6 + 𝑎7) 𝑥2 + 𝑎6𝑦2 + 𝑎7𝑧2 + 𝑎8𝑥𝑦 + 𝑎9𝑥𝑧 + 𝑎10𝑦𝑧

= 𝑎1 + 𝑎2𝑥 + 𝑎3𝑦 + 𝑎4𝑧 + 𝑎6 �−𝑥2 + 𝑦2� + 𝑎7 �−𝑥2 + 𝑧2� + 𝑎8𝑥𝑦 + 𝑎9𝑥𝑧 + 𝑎10𝑦𝑧

Which can be written as

𝑢 �𝑥, 𝑦, 𝑧� = 𝐴1 + 𝐴2𝑥 + 𝐴3𝑦 + 𝐴4𝑧 + 𝐴5 �𝑦2 − 𝑥2� + 𝐴6 �𝑧2 − 𝑥2� + 𝐴7𝑥𝑦 + 𝐴8𝑥𝑧 + 𝐴9𝑦𝑧



3

2 Problem 1.7

Find all real solutions to 2D Laplace equation 𝑢𝑥𝑥 + 𝑢𝑦𝑦 = 0 of the form 𝑢 = log �𝑝 �𝑥, 𝑦��
where 𝑝 �𝑥, 𝑦� is a quadratic polynomial.

Solution

A quadratic polynomial 𝑝 �𝑥, 𝑦� in variables 𝑥, 𝑦 is

𝑝 �𝑥, 𝑦� = 𝑎1 + 𝑎2𝑥 + 𝑎3𝑦 + 𝑎4𝑥2 + 𝑎5𝑦2 + 𝑎6𝑥𝑦

Therefore

𝑢 �𝑥, 𝑦� = log �𝑎1 + 𝑎2𝑥 + 𝑎3𝑦 + 𝑎4𝑥2 + 𝑎5𝑦2 + 𝑎6𝑥𝑦�
Hence

𝑢𝑥 =
𝑎2 + 2𝑎4𝑥 + 𝑎6𝑦

𝑝 �𝑥, 𝑦�

and

𝑢𝑥𝑥 =
2𝑎4

𝑝 �𝑥, 𝑦�
−
�𝑎2 + 2𝑎4𝑥 + 𝑎6𝑦�

2

𝑝 �𝑥, 𝑦�
2 (1)

Similarly

𝑢𝑦 =
𝑎3 + 2𝑎5𝑦 + 𝑎6𝑥

𝑝 �𝑥, 𝑦�

And

𝑢𝑦𝑦 =
2𝑎5

𝑝 �𝑥, 𝑦�
−
�𝑎3 + 2𝑎5𝑦 + 𝑎6𝑥�

2

𝑝 �𝑥, 𝑦�
2 (2)

Substituting (1,2) into 𝑢𝑥𝑥 + 𝑢𝑦𝑦 = 0 gives
⎛
⎜⎜⎜⎜⎜⎜⎝
2𝑎4

𝑝 �𝑥, 𝑦�
−
�𝑎2 + 2𝑎4𝑥 + 𝑎6𝑦�

2

𝑝 �𝑥, 𝑦�
2

⎞
⎟⎟⎟⎟⎟⎟⎠ +

⎛
⎜⎜⎜⎜⎜⎜⎝
2𝑎5

𝑝 �𝑥, 𝑦�
−
�𝑎3 + 2𝑎5𝑦 + 𝑎6𝑥�

2

𝑝 �𝑥, 𝑦�
2

⎞
⎟⎟⎟⎟⎟⎟⎠ = 0

2𝑎4 −
�𝑎2 + 2𝑎4𝑥 + 𝑎6𝑦�

2

𝑝 �𝑥, 𝑦�
+ 2𝑎5 −

�𝑎3 + 2𝑎5𝑦 + 𝑎6𝑥�
2

𝑝 �𝑥, 𝑦�
= 0

2𝑎4 + 2𝑎5 −
�𝑎2 + 2𝑎4𝑥 + 𝑎6𝑦�

2
+ �𝑎3 + 2𝑎5𝑦 + 𝑎6𝑥�

2

𝑝 �𝑥, 𝑦�
= 0

Or

(2𝑎4 + 2𝑎5) 𝑝 �𝑥, 𝑦� = �𝑎2 + 2𝑎4𝑥 + 𝑎6𝑦�
2
+ �𝑎3 + 2𝑎5𝑦 + 𝑎6𝑥�

2

But 𝑝 �𝑥, 𝑦� = 𝑎1 + 𝑎2𝑥 + 𝑎3𝑦 + 𝑎4𝑥2 + 𝑎5𝑦2 + 𝑎6𝑥𝑦. Hence the above becomes

(2𝑎4 + 2𝑎5) �𝑎1 + 𝑎2𝑥 + 𝑎3𝑦 + 𝑎4𝑥2 + 𝑎5𝑦2 + 𝑎6𝑥𝑦� = �𝑎2 + 2𝑎4𝑥 + 𝑎6𝑦�
2
+ �𝑎3 + 2𝑎5𝑦 + 𝑎6𝑥�

2

Expanding and comparing coe�cients gives

2𝑥2𝑎24+2𝑥2𝑎4𝑎5+2𝑎6𝑎4𝑥𝑦+2𝑎6𝑎5𝑥𝑦+2𝑎2𝑎4𝑥+2𝑎2𝑥𝑎5+2𝑦2𝑎4𝑎5+2𝑦2𝑎25+2𝑎3𝑎4𝑦+2𝑎3𝑎5𝑦+2𝑎1𝑎4+2𝑎1𝑎5 =
4𝑥2𝑎24 + 𝑥2𝑎26 + 4𝑎4𝑎6𝑥𝑦 + 4𝑎5𝑎6𝑥𝑦 + 4𝑥𝑎2𝑎4 + 2𝑎3𝑎6𝑥 + 4𝑦2𝑎25 + 𝑦2𝑎26 + 2𝑎2𝑎6𝑦 + 4𝑎3𝑎5𝑦 + 𝑎22 + 𝑎23

Simplifying

2𝑎4𝑎5𝑥2 + 2𝑎2𝑎5𝑥 + 2𝑎4𝑎5𝑦2 + 2𝑎3𝑎4𝑦 + 2𝑎1𝑎4 + 2𝑎1𝑎5 =
2𝑥2𝑎24 + 𝑎26𝑥2 + 2𝑎4𝑎6𝑥𝑦 + 2𝑎5𝑎6𝑥𝑦 + 2𝑎2𝑎4𝑥 + 2𝑎3𝑎6𝑥 + 2𝑎25𝑦2 + 𝑎26𝑦2 + 2𝑎2𝑎6𝑦 + 2𝑎3𝑎5𝑦 + 𝑎22 + 𝑎23
Comparing coe�cients of terms that contain no 𝑥, 𝑦 and coe�cients of 𝑥, 𝑦, 𝑥𝑦, 𝑥2, 𝑦2 gives
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the following equations in order

2𝑎1𝑎4 + 2𝑎1𝑎5 = 𝑎22 + 𝑎23
2𝑎2𝑎5 = 2𝑎2𝑎4 + 2𝑎3𝑎6
2𝑎3𝑎4 = 2𝑎2𝑎6 + 2𝑎3𝑎5

0 = 4𝑎4𝑎6
2𝑎4𝑎5 = 2𝑎24 + 𝑎26
2𝑎4𝑎5 = 2𝑎25 + 𝑎26

Equation 0 = 4𝑎4𝑎6 above implies that 𝑎4 = 0 or 𝑎6 = 0 or both are zero. But if both are zero,
there is no solution. On the other hand, if 𝑎4 = 0, then this also leads to no solution as all
equations reduce to 0 = 0. Therefore only choice left is 𝑎6 = 0. Now the above equations
become

2𝑎1𝑎4 + 2𝑎1𝑎5 = 𝑎22 + 𝑎23
2𝑎2𝑎5 = 2𝑎2𝑎4
2𝑎3𝑎4 = 2𝑎3𝑎5

0 = 0
2𝑎4𝑎5 = 2𝑎24
2𝑎4𝑎5 = 2𝑎25

Or

2𝑎1𝑎4 + 2𝑎1𝑎5 = 𝑎22 + 𝑎23
𝑎5 = 𝑎4
𝑎4 = 𝑎5
0 = 0
𝑎5 = 𝑎4
𝑎4 = 𝑎5

Hence

𝑎4 = 𝑎5 (3)

𝑎6 = 0 (4)

2𝑎1𝑎4 + 2𝑎1𝑎5 = 𝑎22 + 𝑎23
Since 𝑎4 = 𝑎5 then

2𝑎1𝑎5 + 2𝑎1𝑎5 = 𝑎22 + 𝑎23

𝑎5 =
𝑎22 + 𝑎23
2𝑎1

(5)

Using (3,4,5) in 𝑝 �𝑥, 𝑦� = 𝑎1 + 𝑎2𝑥 + 𝑎3𝑦 + 𝑎4𝑥2 + 𝑎5𝑦2 + 𝑎6𝑥𝑦 gives

𝑝 �𝑥, 𝑦� = 𝑎1 + 𝑎2𝑥 + 𝑎3𝑦 + 𝑎5𝑥2 + 𝑎5𝑦2

= 𝑎1 + 𝑎2𝑥 + 𝑎3𝑦 + 𝑎5 �𝑥2 + 𝑦2�

= 𝑎1 + 𝑎2𝑥 + 𝑎3𝑦 +
𝑎22 + 𝑎23
2𝑎1

�𝑥2 + 𝑦2�

Only three arbitrary constants are needed. Let 𝑎1 = 𝑎, 𝑎2 = 𝑏, 𝑎3 = 𝑐 the above becomes

𝑝 �𝑥, 𝑦� = 𝑎 + 𝑏𝑥 + 𝑐𝑦 +
𝑏2 + 𝑐2

2𝑎
�𝑥2 + 𝑦2�

And the solution becomes

𝑢 �𝑥, 𝑦� = log �𝑎 + 𝑏𝑥 + 𝑐𝑦 +
𝑏2 + 𝑐2

2𝑎
�𝑥2 + 𝑦2��
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3 Problem 1.13

Find all solutions 𝑢 = 𝑓 (𝑟) of the 3D Laplace equation 𝑢𝑥𝑥 + 𝑢𝑦𝑦 + 𝑢𝑧𝑧 = 0 that depends only
on radial coordinates 𝑟 = �𝑥2 + 𝑦2 + 𝑧2

Solution

The Laplacian in 3D in spherical coordinates is

∇ 2𝑢 �𝑟, 𝜃, 𝜙� = 𝑢𝑟𝑟 +
2
𝑟
𝑢𝑟 +

1
𝑟2 �

cos𝜃
sin𝜃𝑢𝜃 + 𝑢𝜃𝜃� +

1
𝑟2 sin2 𝜃

𝑢𝜙𝜙

The above shows that the terms that depend only on 𝑟 makes the laplacian

∇ 2𝑢 (𝑟) = 𝑢𝑟𝑟 +
2
𝑟
𝑢𝑟

Hence the PDE ∇ 2𝑢 (𝑟) = 0 becomes an ODE now since there is only one dependent
variable giving

𝑢′′ (𝑟) +
2
𝑟
𝑢′ (𝑟) = 0

Let 𝑣 = 𝑢′ (𝑟) and the above becomes

𝑣′ (𝑟) +
2
𝑟
𝑣 (𝑟) = 0

This is linear first order ODE. The integrating factor is 𝐼 = 𝑒∫
2
𝑟 𝑑𝑟 = 𝑒2 ln 𝑟 = 𝑟2. Therefore

the above becomes 𝑑
𝑑𝑟
�𝑣𝑟2� = 0 or 𝑣𝑟2 = 𝐶1 or 𝑣 (𝑟) =

𝐶1
𝑟2 . Therefore

𝑢′ =
𝐶1
𝑟2

𝑑𝑢 =
𝐶1
𝑟2
𝑑𝑟

Integrating gives the solution

𝑢 = −
𝐶1
𝑟
+ 𝐶2

The above is the required solution. Hence

𝑓 (𝑟) = −𝐶1𝑟 + 𝐶2

Where 𝐶1, 𝐶2 are arbitrary constants.
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4 Problem 1.20

The displacement 𝑢 (𝑡, 𝑥) of a forced violin string is modeled by the PDE 𝑢𝑡𝑡 = 4𝑢𝑥𝑥 +𝐹 (𝑡, 𝑥).
When the string is subjected to the external force 𝐹 (𝑡, 𝑥) = cos 𝑥, the solution is 𝑢 (𝑡, 𝑥) =
cos (𝑥 − 2𝑡) + 1

4 cos 𝑥, while when 𝐹 (𝑡, 𝑥) = sin 𝑥, the solution is 𝑢 (𝑡, 𝑥) = sin (𝑥 − 2𝑡) + 1
4 sin 𝑥.

Find a solution when the forcing function is (a) cos 𝑥 − 5 sin 𝑥, (b) sin (𝑥 − 3)

Solution

4.1 Part (a)

Since the PDE is linear, superposition can be used. When the input is 𝐹 (𝑡, 𝑥) = cos 𝑥−5 sin 𝑥
then the solution is

𝑢 (𝑡, 𝑥) = �cos (𝑥 − 2𝑡) + 1
4

cos 𝑥� − 5 �sin (𝑥 − 2𝑡) +
1
4

sin 𝑥�

= cos (𝑥 − 2𝑡) + 1
4

cos 𝑥 − 5 sin (𝑥 − 2𝑡) − 5
4

sin 𝑥

4.2 Part (b)

Since the PDE is linear, superposition can be used. When the input is 𝐹 (𝑡, 𝑥) = sin (𝑥 − 3)
then the solution same as when the input is sin 𝑥 but shifted by 3. Hence

𝑢 (𝑡, 𝑥) = sin ((𝑥 − 3) − 2𝑡) + 1
4

sin (𝑥 − 3)
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5 Problem 1.27b

Solve the following inhomogeneous linear ODE 5𝑢′′ − 4𝑢′ + 4𝑢 = 𝑒𝑥 cos 𝑥

Solution

First the homogeneous solution 𝑢ℎ is found, then a particular solution 𝑢𝑝 is found. The
general solution will be the sum of both 𝑢 = 𝑢ℎ + 𝑢𝑝. Since this is a constant coe�cient

ODE, the characteristic equation is 5𝜆2 − 4𝜆 + 4 = 0. The roots are 𝜆1 =
2
5 +

4
5 𝑖, 𝜆1 =

2
5 −

4
5 𝑖,

which implies the solution is

𝑢ℎ (𝑥) = 𝑒
2
5𝑥 �𝑐1 cos �

4
5
𝑥� + 𝑐2 sin �

4
5
𝑥��

Using the method of undetermined coe�cients, and since the forcing function is 𝑒𝑥 cos 𝑥,
then let

𝑢𝑝 = 𝐴𝑒𝑥 (𝐵 cos 𝑥 + 𝐶 sin 𝑥) (1)

Hence

𝑢′𝑝 = 𝐴𝑒𝑥 (𝐵 cos 𝑥 + 𝐶 sin 𝑥) + 𝐴𝑒𝑥 (−𝐵 sin 𝑥 + 𝐶 cos 𝑥) (2)

𝑢′′𝑝 = 𝐴𝑒𝑥 (𝐵 cos 𝑥 + 𝐶 sin 𝑥) + 𝐴𝑒𝑥 (−𝐵 sin 𝑥 + 𝐶 cos 𝑥) + 𝐴𝑒𝑥 (−𝐵 sin 𝑥 + 𝐶 cos 𝑥) + 𝐴𝑒𝑥 (−𝐵 cos 𝑥 − 𝐶 sin 𝑥)
= 𝐴𝑒𝑥 (𝐵 cos 𝑥 + 𝐶 sin 𝑥 − 𝐵 sin 𝑥 + 𝐶 cos 𝑥 − 𝐵 sin 𝑥 + 𝐶 cos 𝑥 − 𝐵 cos 𝑥 − 𝐶 sin 𝑥)
= 𝐴𝑒𝑥 (−𝐵 sin 𝑥 + 𝐶 cos 𝑥 − 𝐵 sin 𝑥 + 𝐶 cos 𝑥)
= 𝐴𝑒𝑥 (−2𝐵 sin 𝑥 + 2𝐶 cos 𝑥) (3)

Substituting (1,2,3) back into the original ODE gives

5𝐴𝑒𝑥 (−2𝐵 sin 𝑥 + 2𝐶 cos 𝑥) − 4 (𝐴𝑒𝑥 (𝐵 cos 𝑥 + 𝐶 sin 𝑥) + 𝐴𝑒𝑥 (−𝐵 sin 𝑥 + 𝐶 cos 𝑥)) + 4𝐴𝑒𝑥 (𝐵 cos 𝑥 + 𝐶 sin 𝑥) = 𝑒𝑥 cos 𝑥
𝐴𝑒𝑥 (−10𝐵 sin 𝑥 + 10𝐶 cos 𝑥) − 𝐴𝑒𝑥 (4𝐵 cos 𝑥 + 4𝐶 sin 𝑥) − 𝐴𝑒𝑥 (−4𝐵 sin 𝑥 + 4𝐶 cos 𝑥) + 𝐴𝑒𝑥 (4𝐵 cos 𝑥 + 4𝐶 sin 𝑥) = 𝑒𝑥 cos 𝑥

𝐴𝑒𝑥 (−10𝐵 sin 𝑥 + 10𝐶 cos 𝑥 − 4𝐵 cos 𝑥 − 4𝐶 sin 𝑥 + 4𝐵 sin 𝑥 − 4𝐶 cos 𝑥 + 4𝐵 cos 𝑥 + 4𝐶 sin 𝑥) = 𝑒𝑥 cos 𝑥

Hence

𝐴𝑒𝑥 (6𝐶 cos 𝑥 − 6𝐵 sin 𝑥) = 𝑒𝑥 cos 𝑥
Comparing coe�cients shows that

𝐴 = 1
𝐵 = 0

𝐶 =
1
6

Hence from (1)

𝑢𝑝 = 𝑒𝑥
sin 𝑥
6

Therefore the general solution is

𝑢 (𝑥) = 𝑢ℎ (𝑥) + 𝑢𝑝 (𝑥)

= 𝑒
2
5𝑥 �𝑐1 cos �

4
5
𝑥� + 𝑐2 sin �

4
5
𝑥�� + 𝑒𝑥

sin 𝑥
6
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6 Problem 2.1.6

Solve the PDE 𝜕2𝑢
𝜕𝑥𝜕𝑦 = 0 for 𝑢 �𝑥, 𝑦�

Solution

Integrating once w.r.t 𝑥 gives
𝜕𝑢
𝜕𝑦

= 𝐹 �𝑦�

Where 𝐹 �𝑦� acts as the constant of integration, but since this is a PDE, it becomes an
arbitrary function of 𝑦 only. Integrating the above again w.r.t. 𝑦 gives

𝑢 = �𝐹 �𝑦� 𝑑𝑦 + 𝐺 (𝑥)

Where 𝐺 (𝑥) is an arbitrary function of 𝑥 only. If we let ∫𝐹 �𝑦� 𝑑𝑦 = 𝐻 �𝑦� where 𝐻�𝑦� is the
antiderivative for the indefinite integral which depends on 𝑦 only. Then the above can be
written as

𝑢 �𝑥, 𝑦� = 𝐻 �𝑦� + 𝐺 (𝑥)

To verify, from the above 𝜕𝑢
𝜕𝑦 = 𝐻

′ �𝑦� and hence

𝜕2𝑢
𝜕𝑥𝜕𝑦

=
𝑑
𝑑𝑥
�𝐻′ �𝑦��

= 0
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7 Problem 2.2.2

Solve the following initial value problems and graph the solutions at 𝑡 = 1, 2, 3

a 𝑢𝑡 − 3𝑢𝑥 = 0, 𝑢 (0, 𝑥) = 𝑒−𝑥
2

b 𝑢𝑡 + 2𝑢𝑥 = 0, 𝑢 (−1, 𝑥) =
𝑥

1+𝑥2

c 𝑢𝑡 + 𝑢𝑥 +
1
2𝑢 = 0, 𝑢 (0, 𝑥) = arctan (𝑥)

d 𝑢𝑡 − 4𝑢𝑥 + 𝑢 = 0, 𝑢 (0, 𝑥) =
1

1+𝑥2

Solution

7.1 Part a

Let 𝜉 be the characteristic variable defined such that 𝜉 = 𝑥 − 𝑐𝑡. Where characteristic lines
are given by 𝑥 = 𝑥0 + 𝑐𝑡. But 𝑐 = −3 in this problem. Hence characteristic lines are

𝑥 = 𝑥0 − 3𝑡

Where 𝑥0 means the same as 𝑥 (0), i.e. 𝑥 (𝑡) at time 𝑡 = 0. Since 𝑐 = −3 then

𝜉 = 𝑥 + 3𝑡

Let

𝑢 (𝑡, 𝑥) ≡ 𝑣 (𝑡, 𝜉)

𝑢𝑡 − 3𝑢𝑥 = 0 is now transformed to 𝑣 (𝑡, 𝜉) as follows
𝜕𝑢
𝜕𝑡

=
𝜕𝑣
𝜕𝑡
𝜕𝑡
𝜕𝑡
+
𝜕𝑣
𝜕𝜉

𝜕𝜉
𝜕𝑡

=
𝜕𝑣
𝜕𝑡

+ 3
𝜕𝑣
𝜕𝜉

(1)

And
𝜕𝑢
𝜕𝑥

=
𝜕𝑣
𝜕𝑡
𝜕𝑡
𝜕𝑥

+
𝜕𝑣
𝜕𝜉

𝜕𝜉
𝜕𝑥

= 0 +
𝜕𝑣
𝜕𝜉

=
𝜕𝑣
𝜕𝜉

(2)

Substituting (1,2) in 𝑢𝑡 − 3𝑢𝑥 = 0 gives the transformed PDE as

𝜕𝑣
𝜕𝑡

+ 3
𝜕𝑣
𝜕𝜉

− 3
𝜕𝑣
𝜕𝜉

= 0

𝜕𝑣
𝜕𝑡

= 0

Integrating w.r.t 𝜉 gives the solution in 𝑣 (𝑡, 𝜉) space as

𝑣 (𝑡, 𝜉) = 𝐹 (𝜉)

Where 𝐹 (𝜉) is an arbitrary continuous function of 𝜉. Transforming back to 𝑢 (𝑡, 𝑥) gives

𝑢 (𝑡, 𝑥) = 𝐹 (𝑥 + 3𝑡) (3)

At 𝑡 = 0 the above becomes

𝑒−𝑥20 = 𝐹 (𝑥0)

This means that (3) becomes (since 𝑥 = 𝑥0 + 𝑐𝑡 or 𝑥 = 𝑥0 − 3𝑡 or 𝑥0 = 𝑥 + 3𝑡)

𝑢 (𝑡, 𝑥) = 𝑒−(𝑥+3𝑡)
2

7.2 Part b

𝑢𝑡 + 2𝑢𝑥 = 0

𝑢 (−1, 𝑥) =
𝑥

1 + 𝑥2



10

Let 𝜉 be the characteristic variable defined such that 𝜉 = 𝑥 − 𝑐𝑡. Where characteristic lines
are given by 𝑥 = 𝑥0 + 𝑐𝑡. But 𝑐 = 2 in this problem. Hence characteristic lines are

𝑥 = 𝑥0 + 2𝑡

And

𝜉 = 𝑥 − 2𝑡

Let 𝑢 (𝑡, 𝑥) ≡ 𝑣 (𝑡, 𝜉). Then 𝑢𝑡 + 2𝑢𝑥 = 0 is transformed to 𝑣 (𝑡, 𝜉) as was done in part (a) (will
not be repeated) which results in

𝜕𝑣
𝜕𝑡

= 0

Integrating w.r.t 𝜉 gives the solution

𝑣 (𝑡, 𝜉) = 𝐹 (𝜉)

Where 𝐹 (𝜉) is an arbitrary continuous function of 𝜉. Transforming back to 𝑢 (𝑡, 𝑥) results in

𝑢 (𝑡, 𝑥) = 𝐹 (𝑥 − 2𝑡) (3)

At 𝑡 = −1 the above becomes
𝑥0

1 + 𝑥20
= 𝐹 (𝑥0 + 2)

Let 𝑥0 + 2 = 𝑧. Then 𝑥0 = 𝑧 − 2. And the above becomes
𝑧 − 2

1 + (𝑧 − 2)2
= 𝐹 (𝑧)

This means that (3) becomes

𝑢 (𝑡, 𝑥) =
(𝑥 − 2𝑡) − 2

1 + ((𝑥 − 2𝑡) − 2)2

=
𝑥 − 2𝑡 − 2

1 + (𝑥 − 2𝑡 − 2)2

7.3 Part c

𝑢𝑡 + 𝑢𝑥 +
1
2
𝑢 = 0 (1)

𝑢 (0, 𝑥) = arctan (𝑥)
Let 𝜉 be the characteristic variable defined such that 𝜉 = 𝑥 − 𝑐𝑡. Where characteristic lines
are given by 𝑥 = 𝑥0 + 𝑐𝑡. But 𝑐 = 1 in this problem. Hence characteristic lines are given by
solution to

𝑑𝑥
𝑑𝑡
= 1

𝑥 (𝑡) = 𝑥0 + 𝑡

And

𝜉 = 𝑥 − 𝑐𝑡
= 𝑥 − 𝑡

Then 𝑢𝑡 +𝑢𝑥 are transformed to 𝑣 (𝑡, 𝜉) as was done in part (a) (will not be repeated) which
results in

𝑢𝑡 + 𝑢𝑥 =
𝜕𝑣
𝜕𝑡

Substituting the above into (1) gives (where now 𝑣 is used in place of 𝑢).
𝜕𝑣
𝜕𝑡

+
1
2
𝑣 = 0

This is now first order ODE since it only depends on 𝑡. Therefore 𝑣′+ 1
2𝑣 = 0. This is linear

in 𝑣. Hence the solution is 𝑑
𝑑𝑡
�𝑣𝑒∫

1
2𝑑𝑡� = 0 or 𝑣𝑒

1
2 𝑡 = 𝐹 (𝜉) where 𝐹 is arbitrary function of 𝜉.

Hence

𝑣 (𝑡, 𝜉) = 𝑒
−1
2 𝑡𝐹 (𝜉)
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Converting back to 𝑢 (𝑡, 𝑥) gives

𝑢 (𝑡, 𝑥) = 𝑒
−𝑡
2 𝐹 (𝑥 − 𝑡) (2)

At 𝑡 = 0 the above becomes

arctan (𝑥0) = 𝐹 (𝑥0)
From the above then (2) can be written as

𝑢 (𝑡, 𝑥) = 𝑒
−𝑡
2 arctan (𝑥 − 𝑡)

7.4 Part d

𝑢𝑡 − 4𝑢𝑥 + 𝑢 = 0

𝑢 (0, 𝑥) =
1

1 + 𝑥2
Let 𝜉 be the characteristic variable defined such that 𝜉 = 𝑥 − 𝑐𝑡. Where characteristic lines
are given by 𝑥 = 𝑥0 + 𝑐𝑡. But 𝑐 = −4 in this problem. Hence characteristic lines are

𝑥 = 𝑥0 − 4𝑡

And

𝜉 = 𝑥 + 4𝑡

Then 𝑢𝑡−4𝑢𝑥 are transformed to 𝑣 (𝑡, 𝜉) as was done in part (a) (will not be repeated) which
results in

𝑢𝑡 − 4𝑢𝑥 =
𝜕𝑣
𝜕𝑡

Substituting the above into (1) gives (where now 𝑣 is used in place of 𝑢).
𝜕𝑣
𝜕𝑡

+ 𝑣 = 0

This is now first order ODE since it only depends on 𝑡. Therefore 𝑣′ + 𝑣 = 0. This is linear
in 𝑣. Hence the solution is 𝑑

𝑑𝑡
�𝑣𝑒∫𝑑𝑡� = 0 or 𝑣𝑒𝑡 = 𝐹 (𝜉) where 𝐹 is arbitrary function of 𝜉.

Hence

𝑣 (𝑡, 𝜉) = 𝑒−𝑡𝐹 (𝜉)

Converting to 𝑢 (𝑡, 𝑥) gives

𝑢 (𝑡, 𝑥) = 𝑒−𝑡𝐹 (𝑥 + 4𝑡) (2)

At 𝑢 (0, 𝑥) = 1
1+𝑥2 the above becomes

1
1 + 𝑥20

= 𝐹 (𝑥0)

From the above then (2) can be written as

𝑢 (𝑡, 𝑥) =
𝑒−𝑡

1 + (𝑥 + 4𝑡)2
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8 Problem 2.2.3

Graph some of the characteristic lines for the following equation and write down the
formula for the general solution

(b) 𝑢𝑡 + 5𝑢𝑥 = 0 , (d) 𝑢𝑡 − 4𝑢𝑥 + 𝑢 = 0

Solution

8.1 Part b

𝑢𝑡 + 5𝑢𝑥 = 0

Let 𝜉 be the characteristic variable defined such that 𝜉 = 𝑥 − 𝑐𝑡. Where characteristic lines
are given by 𝑥 = 𝑥0 + 𝑐𝑡. But 𝑐 = 5 in this problem. Hence characteristic lines are

𝑥 (𝑡) = 𝑥0 + 5𝑡 (1)

And

𝜉 = 𝑥 − 5𝑡

Then 𝑢𝑡 − 5𝑢𝑥 = 0 is transformed to 𝑣 (𝑡, 𝜉) as was done in earlier (will not be repeated)
which results in

𝑢𝑡 − 5𝑢𝑥 =
𝜕𝑣
𝜕𝑡

Therefore 𝜕𝑣
𝜕𝑡 = 0 which has the general solution 𝑣 (𝑡, 𝜉) = 𝐹 (𝜉) where 𝐹 is arbitrary function

of 𝜉. Transforming back to 𝑢 (𝑡, 𝑥) gives

𝑢 (𝑡, 𝑥) = 𝐹 (𝑥 − 5𝑡)

On the characteristic lines given by (1) the solution 𝑢 (𝑡, 𝑥) is constant. The slope of the
characteristic lines is 5 and intercept is 𝑥0. The following is a plot of few lines using di�erent
values of 𝑥0.

t

x

Figure 1: Showing some characteristic lines for part b

8.2 Part d

𝑢𝑡 − 4𝑢𝑥 + 𝑢 = 0

Let 𝜉 be the characteristic variable defined such that 𝜉 = 𝑥 − 𝑐𝑡. Where characteristic lines
are given by 𝑥 = 𝑥0 + 𝑐𝑡. But 𝑐 = −4 in this problem. Hence characteristic lines are

𝑥 (𝑡) = 𝑥0 − 4𝑡 (1)

And

𝜉 = 𝑥 + 4𝑡

Then 𝑢𝑡 − 4𝑢𝑥 is transformed to 𝑣 (𝑡, 𝜉) as was done in earlier (will not be repeated) which
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results in

𝑢𝑡 − 4𝑢𝑥 =
𝜕𝑣
𝜕𝑡

Therefore the original PDE becomes 𝜕𝑣
𝜕𝑡 + 𝑣 = 0, where 𝑢 is replaced by 𝑣. This is linear

first order ODE which has the solution 𝑣 (𝑡, 𝜉) = 𝑒−𝑡𝐹 (𝜉) where 𝐹 is arbitrary function of 𝜉.
Transforming back to 𝑢 (𝑡, 𝑥) gives the general solution as

𝑢 (𝑡, 𝑥) = 𝑒−𝑡𝐹 (𝑥 + 4𝑡)

The following is a plot of few characteristic lines 𝑥 = 𝑥0 − 4𝑡 using di�erent values of 𝑥0.

t

x

Figure 2: Showing some characteristic lines for part d
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9 Problem 2.2.5

Solve 𝑢𝑡 + 2𝑢𝑥 = sin 𝑥, 𝑢 (0, 𝑥) = sin 𝑥

Solution

Let 𝜉 be the characteristic variable defined such that 𝜉 = 𝑥 − 𝑐𝑡. Where characteristic lines
are given by 𝑥 = 𝑥0 + 𝑐𝑡. But 𝑐 = 2 in this problem. Hence characteristic lines are

𝑥 = 𝑥0 + 2𝑡 (1)

And

𝜉 = 𝑥 − 2𝑡

Then 𝑢𝑡 + 2𝑢𝑥 is transformed to 𝑣 (𝑡, 𝜉) as was done in earlier (will not be repeated) which
results in

𝑢𝑡 + 2𝑢𝑥 =
𝜕𝑣
𝜕𝑡

Substituting this into the original PDE gives

𝜕𝑣 (𝑡, 𝜉)
𝜕𝑡

= sin (𝜉 + 2𝑡)

Integrating w.r.t 𝑡 gives

𝑣 (𝑡, 𝜉) = � sin (𝜉 + 2𝑡) 𝑑𝑡 + 𝐹 (𝜉)

= −
cos (𝜉 + 2𝑡)

2
+ 𝐹 (𝜉)

Transforming back to 𝑢 (𝑡, 𝑥) gives

𝑢 (𝑡, 𝑥) = −
cos (𝑥 − 2𝑡 + 2𝑡)

2
+ 𝐹 (𝑥 − 2𝑡)

=
−1
2

cos (𝑥) + 𝐹 (𝑥 − 2𝑡) (1)

When 𝑡 = 0, 𝑢 (0, 𝑥) = sin 𝑥, therefore the above becomes

sin 𝑥0 = 𝐹 (𝑥0) −
1
2

cos 𝑥0

𝐹 (𝑥0) = sin 𝑥0 +
1
2

cos 𝑥0
Therefore the solution (1) becomes

𝑢 (𝑡, 𝑥) = �sin (𝑥 − 2𝑡) +
1
2

cos (𝑥 − 2𝑡)� −
1
2

cos 𝑥

= sin (𝑥 − 2𝑡) + 1
2

cos (𝑥 − 2𝑡) − 1
2

cos 𝑥
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10 Problem 2.2.9

(a) Prove that if the initial data is bounded, �𝑓 (𝑥)� ≤ 𝑀 for all 𝑥 ∈ ℝ, then the solution to the
damped transport equation (2.14) 𝑢𝑡 + 𝑐𝑢𝑥 + 𝑎𝑢 = 0 with 𝑎 > 0 satisfies 𝑢 (𝑡, 𝑥) → 0 as 𝑡 → ∞.
(b) Find a solution to (2.14) that is defined for all (𝑡, 𝑥) but does not satisfy 𝑢 (𝑡, 𝑥) → 0 as
𝑡 → ∞.

Solution

10.1 Part(a)

𝑢𝑡 + 𝑐𝑢𝑥 + 𝑎𝑢 = 0 is solved to show what is required. Let 𝜉 be the characteristic variable
defined such that 𝜉 = 𝑥 − 𝑐𝑡. Where characteristic lines are given by 𝑥 = 𝑥0 + 𝑐𝑡. Hence
characteristic lines are

𝑥 = 𝑥0 + 𝑐𝑡 (1)

And

𝜉 = 𝑥 − 𝑐𝑡

Then 𝑢𝑡 + 𝑐𝑢𝑥 is transformed to 𝑣 (𝑡, 𝜉) as was done in earlier (will not be repeated) which
results in

𝑢𝑡 + 𝑐𝑢𝑥 =
𝜕𝑣
𝜕𝑡

Substituting this into the original PDE gives

𝜕𝑣
𝜕𝑡

+ 𝑎𝑣 = 0

Where 𝑢 is replaced by 𝑣. This can be viewed as first order linear ODE since it depends
on 𝑡 only. Its solution is 𝑣 (𝑡, 𝜉) = 𝑒−𝑎𝑡𝐹 (𝜉) where 𝐹 is arbitrary function of 𝜉. Transforming
back to 𝑢 (𝑡, 𝑥) gives

𝑢 (𝑡, 𝑥) = 𝑒−𝑎𝑡𝐹 (𝑥 − 𝑐𝑡) (1)

At 𝑡 = 0 initial data is 𝑓 (𝑥). Hence the above becomes at 𝑡 = 0

𝑓 (𝑥) = 𝐹 (𝑥)

Hence (1) now becomes

𝑢 (𝑡, 𝑥) = 𝑒−𝑎𝑡𝑓 (𝑥 − 𝑐𝑡) (2)

But since �𝑓 (𝑥)� is bounded, and since 𝑎 > 0 then 𝑒−𝑎𝑡 → 0 as 𝑡 → ∞. Which implies the
solution itself 𝑢 (𝑡, 𝑥) goes to zero as well. This is the reason why initial data needed to be
bounded for this to happen.

10.2 Part(b)

Keeping 𝑎 > 0. If initial data have the form 𝑓 (𝑥) 𝑒−𝑏𝑥 where |𝑏| > 𝑎, then at 𝑡 = 0 the solution
found in (1) becomes

𝑓 (𝑥0) 𝑒−𝑏𝑥0 = 𝐹 (𝑥0)

Then the solution (2) now becomes, after replacing 𝑥0 by 𝑥 − 𝑐𝑡

𝑢 (𝑡, 𝑥) = 𝑒−𝑎𝑡𝑒−𝑏(𝑥−𝑐𝑡)𝑓 (𝑥 − 𝑐𝑡)
= 𝑒−𝑎𝑡+𝑏𝑐𝑡𝑒−𝑏𝑥𝑓 (𝑥 − 𝑐𝑡)
= 𝑒(𝑏𝑐−𝑎)𝑡𝑒−𝑏𝑥𝑓 (𝑥 − 𝑐𝑡)

The problem is asking to show that this does not go to zero for all 𝑥 ∈ ℝ as 𝑡 → ∞. Since
|𝑏| > 𝑎 then 𝑏𝑐 − 𝑎 is positive quantity (𝑐 is assumed positive)1.

Therefore 𝑒(𝑏𝑐−𝑎)𝑡 will blow up as 𝑡 → ∞. And therefore the whole solution will not go to
zero. For any 𝑥, no matter how large 𝑥 is, a large enough 𝑡 can be found to make the
product 𝑒(𝑏𝑐−𝑎)𝑡𝑒−𝑏𝑥 blow up.

1If 𝑐 was negative then initial data could be choosen to be 𝑓 (𝑥) 𝑒𝑏𝑥 where |𝑏| > 𝑎 which will lead to same
result.
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