## HW 1

# Math 5587 <br> Elementary Partial Differential Equations I 

Fall 2019<br>University of Minnesota, Twin Cities

Nasser M. Abbasi

## Contents

1 Problem 1.8a ..... 2
2 Problem 1.7 ..... 3
3 Problem 1.13 ..... 5
4 Problem 1.20 ..... 6
4.1 Part (a) ..... 6
4.2 Part (b) ..... 6
5 Problem 1.27b ..... 7
6 Problem 2.1.6 ..... 8
7 Problem 2.2.2 ..... 9
7.1 Part a ..... 9
7.2 Part b ..... 9
7.3 Part c ..... 10
7.4 Part d ..... 11
8 Problem 2.2.3 ..... 12
8.1 Part b ..... 12
8.2 Part d ..... 12
9 Problem 2.2.5 ..... 14
10 Problem 2.2.9 ..... 15
10.1 Part (a) ..... 15
10.2 Part(b) ..... 15

## 1 Problem 1.8a

Find all quadratic polynomial solutions of the 3D Laplace equation $\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}+\frac{\partial^{2} u}{\partial z^{2}}=0$

## Solution

A quadratic polynomial in variables $x, y, z$ is

$$
\begin{equation*}
u=a_{1}+a_{2} x+a_{3} y+a_{4} z+a_{5} x^{2}+a_{6} y^{2}+a_{7} z^{2}+a_{8} x y+a_{9} x z+a_{10} y z \tag{1}
\end{equation*}
$$

Hence $u_{x}=a_{2}+2 a_{5} x+a_{8} y+a_{9} z$ which implies that $u_{x x}=2 a_{5}$. Similarly $u_{y}=a_{3}+2 a_{6} y+a_{8} x+a_{10} z$, therefore $u_{y y}=2 a_{6}$. And finally $u_{z}=a_{4}+2 a_{7} z+a_{9} x+a_{10} y$ and $u_{z z}=2 a_{7}$. Substituting these results in the Laplace equation gives above result in

$$
\begin{aligned}
2 a_{5}+2 a_{6}+2 a_{7} & =0 \\
a_{5}+a_{6}+a_{7} & =0
\end{aligned}
$$

Therefore $a_{5}=-\left(a_{6}+a_{7}\right)$. Using this relation back in (1) gives

$$
\begin{aligned}
u & =a_{1}+a_{2} x+a_{3} y+a_{4} z-\left(a_{6}+a_{7}\right) x^{2}+a_{6} y^{2}+a_{7} z^{2}+a_{8} x y+a_{9} x z+a_{10} y z \\
& =a_{1}+a_{2} x+a_{3} y+a_{4} z+a_{6}\left(-x^{2}+y^{2}\right)+a_{7}\left(-x^{2}+z^{2}\right)+a_{8} x y+a_{9} x z+a_{10} y z
\end{aligned}
$$

Which can be written as

$$
u(x, y, z)=A_{1}+A_{2} x+A_{3} y+A_{4} z+A_{5}\left(y^{2}-x^{2}\right)+A_{6}\left(z^{2}-x^{2}\right)+A_{7} x y+A_{8} x z+A_{9} y z
$$

## 2 Problem 1.7

Find all real solutions to 2D Laplace equation $u_{x x}+u_{y y}=0$ of the form $u=\log (p(x, y))$ where $p(x, y)$ is a quadratic polynomial.

## Solution

A quadratic polynomial $p(x, y)$ in variables $x, y$ is

$$
p(x, y)=a_{1}+a_{2} x+a_{3} y+a_{4} x^{2}+a_{5} y^{2}+a_{6} x y
$$

Therefore

$$
u(x, y)=\log \left(a_{1}+a_{2} x+a_{3} y+a_{4} x^{2}+a_{5} y^{2}+a_{6} x y\right)
$$

Hence

$$
u_{x}=\frac{a_{2}+2 a_{4} x+a_{6} y}{p(x, y)}
$$

and

$$
\begin{equation*}
u_{x x}=\frac{2 a_{4}}{p(x, y)}-\frac{\left(a_{2}+2 a_{4} x+a_{6} y\right)^{2}}{p(x, y)^{2}} \tag{1}
\end{equation*}
$$

Similarly

$$
u_{y}=\frac{a_{3}+2 a_{5} y+a_{6} x}{p(x, y)}
$$

And

$$
\begin{equation*}
u_{y y}=\frac{2 a_{5}}{p(x, y)}-\frac{\left(a_{3}+2 a_{5} y+a_{6} x\right)^{2}}{p(x, y)^{2}} \tag{2}
\end{equation*}
$$

Substituting (1,2) into $u_{x x}+u_{y y}=0$ gives

$$
\begin{aligned}
\left(\frac{2 a_{4}}{p(x, y)}-\frac{\left(a_{2}+2 a_{4} x+a_{6} y\right)^{2}}{p(x, y)^{2}}\right)+\left(\frac{2 a_{5}}{p(x, y)}-\frac{\left(a_{3}+2 a_{5} y+a_{6} x\right)^{2}}{p(x, y)^{2}}\right) & =0 \\
2 a_{4}-\frac{\left(a_{2}+2 a_{4} x+a_{6} y\right)^{2}}{p(x, y)}+2 a_{5}-\frac{\left(a_{3}+2 a_{5} y+a_{6} x\right)^{2}}{p(x, y)} & =0 \\
2 a_{4}+2 a_{5}-\frac{\left(a_{2}+2 a_{4} x+a_{6} y\right)^{2}+\left(a_{3}+2 a_{5} y+a_{6} x\right)^{2}}{p(x, y)} & =0
\end{aligned}
$$

Or

$$
\left(2 a_{4}+2 a_{5}\right) p(x, y)=\left(a_{2}+2 a_{4} x+a_{6} y\right)^{2}+\left(a_{3}+2 a_{5} y+a_{6} x\right)^{2}
$$

But $p(x, y)=a_{1}+a_{2} x+a_{3} y+a_{4} x^{2}+a_{5} y^{2}+a_{6} x y$. Hence the above becomes

$$
\left(2 a_{4}+2 a_{5}\right)\left(a_{1}+a_{2} x+a_{3} y+a_{4} x^{2}+a_{5} y^{2}+a_{6} x y\right)=\left(a_{2}+2 a_{4} x+a_{6} y\right)^{2}+\left(a_{3}+2 a_{5} y+a_{6} x\right)^{2}
$$

Expanding and comparing coefficients gives

$$
\begin{gathered}
2 x^{2} a_{4}^{2}+2 x^{2} a_{4} a_{5}+2 a_{6} a_{4} x y+2 a_{6} a_{5} x y+2 a_{2} a_{4} x+2 a_{2} x a_{5}+2 y^{2} a_{4} a_{5}+2 y^{2} a_{5}^{2}+2 a_{3} a_{4} y+2 a_{3} a_{5} y+2 a_{1} a_{4}+2 a_{1} a_{5}= \\
4 x^{2} a_{4}^{2}+x^{2} a_{6}^{2}+4 a_{4} a_{6} x y+4 a_{5} a_{6} x y+4 x a_{2} a_{4}+2 a_{3} a_{6} x+4 y^{2} a_{5}^{2}+y^{2} a_{6}^{2}+2 a_{2} a_{6} y+4 a_{3} a_{5} y+a_{2}^{2}+a_{3}^{2}
\end{gathered}
$$

## Simplifying

$$
\begin{aligned}
& \quad 2 a_{4} a_{5} x^{2}+2 a_{2} a_{5} x+2 a_{4} a_{5} y^{2}+2 a_{3} a_{4} y+2 a_{1} a_{4}+2 a_{1} a_{5}= \\
& 2 x^{2} a_{4}^{2}+a_{6}^{2} x^{2}+2 a_{4} a_{6} x y+2 a_{5} a_{6} x y+2 a_{2} a_{4} x+2 a_{3} a_{6} x+2 a_{5}^{2} y^{2}+a_{6}^{2} y^{2}+2 a_{2} a_{6} y+2 a_{3} a_{5} y+a_{2}^{2}+a_{3}^{2}
\end{aligned}
$$

Comparing coefficients of terms that contain no $x, y$ and coefficients of $x, y, x y, x^{2}, y^{2}$ gives
the following equations in order

$$
\begin{aligned}
2 a_{1} a_{4}+2 a_{1} a_{5} & =a_{2}^{2}+a_{3}^{2} \\
2 a_{2} a_{5} & =2 a_{2} a_{4}+2 a_{3} a_{6} \\
2 a_{3} a_{4} & =2 a_{2} a_{6}+2 a_{3} a_{5} \\
0 & =4 a_{4} a_{6} \\
2 a_{4} a_{5} & =2 a_{4}^{2}+a_{6}^{2} \\
2 a_{4} a_{5} & =2 a_{5}^{2}+a_{6}^{2}
\end{aligned}
$$

Equation $0=4 a_{4} a_{6}$ above implies that $a_{4}=0$ or $a_{6}=0$ or both are zero. But if both are zero, there is no solution. On the other hand, if $a_{4}=0$, then this also leads to no solution as all equations reduce to $0=0$. Therefore only choice left is $a_{6}=0$. Now the above equations become

$$
\begin{aligned}
2 a_{1} a_{4}+2 a_{1} a_{5} & =a_{2}^{2}+a_{3}^{2} \\
2 a_{2} a_{5} & =2 a_{2} a_{4} \\
2 a_{3} a_{4} & =2 a_{3} a_{5} \\
0 & =0 \\
2 a_{4} a_{5} & =2 a_{4}^{2} \\
2 a_{4} a_{5} & =2 a_{5}^{2}
\end{aligned}
$$

Or

$$
\begin{aligned}
2 a_{1} a_{4}+2 a_{1} a_{5} & =a_{2}^{2}+a_{3}^{2} \\
a_{5} & =a_{4} \\
a_{4} & =a_{5} \\
0 & =0 \\
a_{5} & =a_{4} \\
a_{4} & =a_{5}
\end{aligned}
$$

Hence

$$
\begin{align*}
a_{4} & =a_{5}  \tag{3}\\
a_{6} & =0  \tag{4}\\
2 a_{1} a_{4}+2 a_{1} a_{5} & =a_{2}^{2}+a_{3}^{2}
\end{align*}
$$

Since $a_{4}=a_{5}$ then

$$
\begin{align*}
2 a_{1} a_{5}+2 a_{1} a_{5} & =a_{2}^{2}+a_{3}^{2} \\
a_{5} & =\frac{a_{2}^{2}+a_{3}^{2}}{2 a_{1}} \tag{5}
\end{align*}
$$

Using $(3,4,5)$ in $p(x, y)=a_{1}+a_{2} x+a_{3} y+a_{4} x^{2}+a_{5} y^{2}+a_{6} x y$ gives

$$
\begin{aligned}
p(x, y) & =a_{1}+a_{2} x+a_{3} y+a_{5} x^{2}+a_{5} y^{2} \\
& =a_{1}+a_{2} x+a_{3} y+a_{5}\left(x^{2}+y^{2}\right) \\
& =a_{1}+a_{2} x+a_{3} y+\frac{a_{2}^{2}+a_{3}^{2}}{2 a_{1}}\left(x^{2}+y^{2}\right)
\end{aligned}
$$

Only three arbitrary constants are needed. Let $a_{1}=a, a_{2}=b, a_{3}=c$ the above becomes

$$
p(x, y)=a+b x+c y+\frac{b^{2}+c^{2}}{2 a}\left(x^{2}+y^{2}\right)
$$

And the solution becomes

$$
u(x, y)=\log \left(a+b x+c y+\frac{b^{2}+c^{2}}{2 a}\left(x^{2}+y^{2}\right)\right)
$$

## 3 Problem 1.13

Find all solutions $u=f(r)$ of the 3D Laplace equation $u_{x x}+u_{y y}+u_{z z}=0$ that depends only on radial coordinates $r=\sqrt{x^{2}+y^{2}+z^{2}}$

## Solution

The Laplacian in 3D in spherical coordinates is

$$
\nabla^{2} u(r, \theta, \phi)=u_{r r}+\frac{2}{r} u_{r}+\frac{1}{r^{2}}\left(\frac{\cos \theta}{\sin \theta} u_{\theta}+u_{\theta \theta}\right)+\frac{1}{r^{2} \sin ^{2} \theta} u_{\phi \phi}
$$

The above shows that the terms that depend only on $r$ makes the laplacian

$$
\nabla^{2} u(r)=u_{r r}+\frac{2}{r} u_{r}
$$

Hence the PDE $\nabla^{2} u(r)=0$ becomes an ODE now since there is only one dependent variable giving

$$
u^{\prime \prime}(r)+\frac{2}{r} u^{\prime}(r)=0
$$

Let $v=u^{\prime}(r)$ and the above becomes

$$
v^{\prime}(r)+\frac{2}{r} v(r)=0
$$

This is linear first order ODE. The integrating factor is $I=e^{\int_{\bar{r}}^{2} d r}=e^{2 \ln r}=r^{2}$. Therefore the above becomes $\frac{d}{d r}\left(v r^{2}\right)=0$ or $v r^{2}=C_{1}$ or $v(r)=\frac{C_{1}}{r^{2}}$. Therefore

$$
\begin{aligned}
& u^{\prime}=\frac{C_{1}}{r^{2}} \\
& d u=\frac{C_{1}}{r^{2}} d r
\end{aligned}
$$

Integrating gives the solution

$$
u=-\frac{C_{1}}{r}+C_{2}
$$

The above is the required solution. Hence

$$
f(r)=-\frac{C_{1}}{r}+C_{2}
$$

Where $C_{1}, C_{2}$ are arbitrary constants.

## 4 Problem 1.20

The displacement $u(t, x)$ of a forced violin string is modeled by the PDE $u_{t t}=4 u_{x x}+F(t, x)$. When the string is subjected to the external force $F(t, x)=\cos x$, the solution is $u(t, x)=$ $\cos (x-2 t)+\frac{1}{4} \cos x$, while when $F(t, x)=\sin x$, the solution is $u(t, x)=\sin (x-2 t)+\frac{1}{4} \sin x$. Find a solution when the forcing function is (a) $\cos x-5 \sin x$, (b) $\sin (x-3)$

## Solution

### 4.1 Part (a)

Since the PDE is linear, superposition can be used. When the input is $F(t, x)=\cos x-5 \sin x$ then the solution is

$$
\begin{aligned}
u(t, x) & =\left(\cos (x-2 t)+\frac{1}{4} \cos x\right)-5\left(\sin (x-2 t)+\frac{1}{4} \sin x\right) \\
& =\cos (x-2 t)+\frac{1}{4} \cos x-5 \sin (x-2 t)-\frac{5}{4} \sin x
\end{aligned}
$$

### 4.2 Part (b)

Since the PDE is linear, superposition can be used. When the input is $F(t, x)=\sin (x-3)$ then the solution same as when the input is $\sin x$ but shifted by 3 . Hence

$$
u(t, x)=\sin ((x-3)-2 t)+\frac{1}{4} \sin (x-3)
$$

## 5 Problem 1.27b

Solve the following inhomogeneous linear ODE $5 u^{\prime \prime}-4 u^{\prime}+4 u=e^{x} \cos x$

## Solution

First the homogeneous solution $u_{h}$ is found, then a particular solution $u_{p}$ is found. The general solution will be the sum of both $u=u_{h}+u_{p}$. Since this is a constant coefficient ODE, the characteristic equation is $5 \lambda^{2}-4 \lambda+4=0$. The roots are $\lambda_{1}=\frac{2}{5}+\frac{4}{5} i, \lambda_{1}=\frac{2}{5}-\frac{4}{5} i$, which implies the solution is

$$
u_{h}(x)=e^{\frac{2}{5} x}\left(c_{1} \cos \left(\frac{4}{5} x\right)+c_{2} \sin \left(\frac{4}{5} x\right)\right)
$$

Using the method of undetermined coefficients, and since the forcing function is $e^{x} \cos x$, then let

$$
\begin{equation*}
u_{p}=A e^{x}(B \cos x+C \sin x) \tag{1}
\end{equation*}
$$

Hence

$$
\begin{align*}
u_{p}^{\prime} & =A e^{x}(B \cos x+C \sin x)+A e^{x}(-B \sin x+C \cos x)  \tag{2}\\
u_{p}^{\prime \prime} & =A e^{x}(B \cos x+C \sin x)+A e^{x}(-B \sin x+C \cos x)+A e^{x}(-B \sin x+C \cos x)+A e^{x}(-B \cos x-C \sin x) \\
& =A e^{x}(B \cos x+C \sin x-B \sin x+C \cos x-B \sin x+C \cos x-B \cos x-C \sin x) \\
& =A e^{x}(-B \sin x+C \cos x-B \sin x+C \cos x) \\
& =A e^{x}(-2 B \sin x+2 C \cos x)
\end{align*}
$$

Substituting $(1,2,3)$ back into the original ODE gives

$$
\begin{array}{r}
5 A e^{x}(-2 B \sin x+2 C \cos x)-4\left(A e^{x}(B \cos x+C \sin x)+A e^{x}(-B \sin x+C \cos x)\right)+4 A e^{x}(B \cos x+C \sin x)=e^{x} \cos x \\
A e^{x}(-10 B \sin x+10 C \cos x)-A e^{x}(4 B \cos x+4 C \sin x)-A e^{x}(-4 B \sin x+4 C \cos x)+A e^{x}(4 B \cos x+4 C \sin x)=e^{x} \cos x \\
A e^{x}(-10 B \sin x+10 C \cos x-4 B \cos x-4 C \sin x+4 B \sin x-4 C \cos x+4 B \cos x+4 C \sin x)=e^{x} \cos x
\end{array}
$$

## Hence

$$
A e^{x}(6 C \cos x-6 B \sin x)=e^{x} \cos x
$$

Comparing coefficients shows that

$$
\begin{aligned}
A & =1 \\
B & =0 \\
C & =\frac{1}{6}
\end{aligned}
$$

Hence from (1)

$$
u_{p}=e^{x} \frac{\sin x}{6}
$$

Therefore the general solution is

$$
\begin{aligned}
u(x) & =u_{h}(x)+u_{p}(x) \\
& =e^{\frac{2}{5} x}\left(c_{1} \cos \left(\frac{4}{5} x\right)+c_{2} \sin \left(\frac{4}{5} x\right)\right)+e^{x} \frac{\sin x}{6}
\end{aligned}
$$

## 6 Problem 2.1.6

Solve the PDE $\frac{\partial^{2} u}{\partial x \partial y}=0$ for $u(x, y)$

## Solution

Integrating once w.r.t $x$ gives

$$
\frac{\partial u}{\partial y}=F(y)
$$

Where $F(y)$ acts as the constant of integration, but since this is a PDE, it becomes an arbitrary function of $y$ only. Integrating the above again w.r.t. $y$ gives

$$
u=\int F(y) d y+G(x)
$$

Where $G(x)$ is an arbitrary function of $x$ only. If we let $\int F(y) d y=H(y)$ where $H(y)$ is the antiderivative for the indefinite integral which depends on $y$ only. Then the above can be written as

$$
u(x, y)=H(y)+G(x)
$$

To verify, from the above $\frac{\partial u}{\partial y}=H^{\prime}(y)$ and hence

$$
\begin{aligned}
\frac{\partial^{2} u}{\partial x \partial y} & =\frac{d}{d x}\left(H^{\prime}(y)\right) \\
& =0
\end{aligned}
$$

## 7 Problem 2.2.2

Solve the following initial value problems and graph the solutions at $t=1,2,3$
a $u_{t}-3 u_{x}=0, u(0, x)=e^{-x^{2}}$
b $u_{t}+2 u_{x}=0, u(-1, x)=\frac{x}{1+x^{2}}$
c $u_{t}+u_{x}+\frac{1}{2} u=0, u(0, x)=\arctan (x)$
d $u_{t}-4 u_{x}+u=0, u(0, x)=\frac{1}{1+x^{2}}$
Solution

### 7.1 Part a

Let $\xi$ be the characteristic variable defined such that $\xi=x-c t$. Where characteristic lines are given by $x=x_{0}+c t$. But $c=-3$ in this problem. Hence characteristic lines are

$$
x=x_{0}-3 t
$$

Where $x_{0}$ means the same as $x(0)$, i.e. $x(t)$ at time $t=0$. Since $c=-3$ then

$$
\xi=x+3 t
$$

Let

$$
u(t, x) \equiv v(t, \xi)
$$

$u_{t}-3 u_{x}=0$ is now transformed to $v(t, \xi)$ as follows

$$
\begin{align*}
\frac{\partial u}{\partial t} & =\frac{\partial v}{\partial t} \frac{\partial t}{\partial t}+\frac{\partial v}{\partial \xi} \frac{\partial \xi}{\partial t} \\
& =\frac{\partial v}{\partial t}+3 \frac{\partial v}{\partial \xi} \tag{1}
\end{align*}
$$

And

$$
\begin{align*}
\frac{\partial u}{\partial x} & =\frac{\partial v}{\partial t} \frac{\partial t}{\partial x}+\frac{\partial v}{\partial \xi} \frac{\partial \xi}{\partial x} \\
& =0+\frac{\partial v}{\partial \xi} \\
& =\frac{\partial v}{\partial \xi} \tag{2}
\end{align*}
$$

Substituting (1,2) in $u_{t}-3 u_{x}=0$ gives the transformed PDE as

$$
\begin{aligned}
\frac{\partial v}{\partial t}+3 \frac{\partial v}{\partial \xi}-3 \frac{\partial v}{\partial \xi} & =0 \\
\frac{\partial v}{\partial t} & =0
\end{aligned}
$$

Integrating w.r.t $\xi$ gives the solution in $v(t, \xi)$ space as

$$
v(t, \xi)=F(\xi)
$$

Where $F(\xi)$ is an arbitrary continuous function of $\xi$. Transforming back to $u(t, x)$ gives

$$
\begin{equation*}
u(t, x)=F(x+3 t) \tag{3}
\end{equation*}
$$

At $t=0$ the above becomes

$$
e^{-x_{0}^{2}}=F\left(x_{0}\right)
$$

This means that (3) becomes (since $x=x_{0}+c t$ or $x=x_{0}-3 t$ or $x_{0}=x+3 t$ )

$$
u(t, x)=e^{-(x+3 t)^{2}}
$$

### 7.2 Part b

$$
\begin{aligned}
& u_{t}+2 u_{x}=0 \\
& u(-1, x)=\frac{x}{1+x^{2}}
\end{aligned}
$$

Let $\xi$ be the characteristic variable defined such that $\xi=x-c t$. Where characteristic lines are given by $x=x_{0}+c t$. But $c=2$ in this problem. Hence characteristic lines are

$$
x=x_{0}+2 t
$$

And

$$
\xi=x-2 t
$$

Let $u(t, x) \equiv v(t, \xi)$. Then $u_{t}+2 u_{x}=0$ is transformed to $v(t, \xi)$ as was done in part (a) (will not be repeated) which results in

$$
\frac{\partial v}{\partial t}=0
$$

Integrating w.r.t $\xi$ gives the solution

$$
v(t, \xi)=F(\xi)
$$

Where $F(\xi)$ is an arbitrary continuous function of $\xi$. Transforming back to $u(t, x)$ results in

$$
\begin{equation*}
u(t, x)=F(x-2 t) \tag{3}
\end{equation*}
$$

At $t=-1$ the above becomes

$$
\frac{x_{0}}{1+x_{0}^{2}}=F\left(x_{0}+2\right)
$$

Let $x_{0}+2=z$. Then $x_{0}=z-2$. And the above becomes

$$
\frac{z-2}{1+(z-2)^{2}}=F(z)
$$

This means that (3) becomes

$$
\begin{aligned}
u(t, x) & =\frac{(x-2 t)-2}{1+((x-2 t)-2)^{2}} \\
& =\frac{x-2 t-2}{1+(x-2 t-2)^{2}}
\end{aligned}
$$

### 7.3 Part c

$$
\begin{align*}
u_{t}+u_{x}+\frac{1}{2} u & =0  \tag{1}\\
u(0, x) & =\arctan (x)
\end{align*}
$$

Let $\xi$ be the characteristic variable defined such that $\xi=x-c t$. Where characteristic lines are given by $x=x_{0}+c t$. But $c=1$ in this problem. Hence characteristic lines are given by solution to

$$
\begin{aligned}
\frac{d x}{d t} & =1 \\
x(t) & =x_{0}+t
\end{aligned}
$$

And

$$
\begin{aligned}
\xi & =x-c t \\
& =x-t
\end{aligned}
$$

Then $u_{t}+u_{x}$ are transformed to $v(t, \xi)$ as was done in part (a) (will not be repeated) which results in

$$
u_{t}+u_{x}=\frac{\partial v}{\partial t}
$$

Substituting the above into (1) gives (where now $v$ is used in place of $u$ ).

$$
\frac{\partial v}{\partial t}+\frac{1}{2} v=0
$$

This is now first order ODE since it only depends on $t$. Therefore $v^{\prime}+\frac{1}{2} v=0$. This is linear in $v$. Hence the solution is $\frac{d}{d t}\left(v e^{\int \frac{1}{2} d t}\right)=0$ or $v e^{\frac{1}{2} t}=F(\xi)$ where $F$ is arbitrary function of $\xi$. Hence

$$
v(t, \xi)=e^{\frac{-1}{2} t} F(\xi)
$$

Converting back to $u(t, x)$ gives

$$
\begin{equation*}
u(t, x)=e^{\frac{-t}{2}} F(x-t) \tag{2}
\end{equation*}
$$

At $t=0$ the above becomes

$$
\arctan \left(x_{0}\right)=F\left(x_{0}\right)
$$

From the above then (2) can be written as

$$
u(t, x)=e^{\frac{-t}{2}} \arctan (x-t)
$$

### 7.4 Part d

$$
\begin{aligned}
u_{t}-4 u_{x}+u & =0 \\
u(0, x) & =\frac{1}{1+x^{2}}
\end{aligned}
$$

Let $\xi$ be the characteristic variable defined such that $\xi=x-c t$. Where characteristic lines are given by $x=x_{0}+c t$. But $c=-4$ in this problem. Hence characteristic lines are

$$
x=x_{0}-4 t
$$

And

$$
\xi=x+4 t
$$

Then $u_{t}-4 u_{x}$ are transformed to $v(t, \xi)$ as was done in part (a) (will not be repeated) which results in

$$
u_{t}-4 u_{x}=\frac{\partial v}{\partial t}
$$

Substituting the above into (1) gives (where now $v$ is used in place of $u$ ).

$$
\frac{\partial v}{\partial t}+v=0
$$

This is now first order ODE since it only depends on $t$. Therefore $v^{\prime}+v=0$. This is linear in $v$. Hence the solution is $\frac{d}{d t}\left(v e^{\int d t}\right)=0$ or $v e^{t}=F(\xi)$ where $F$ is arbitrary function of $\xi$. Hence

$$
v(t, \xi)=e^{-t} F(\xi)
$$

Converting to $u(t, x)$ gives

$$
\begin{equation*}
u(t, x)=e^{-t} F(x+4 t) \tag{2}
\end{equation*}
$$

At $u(0, x)=\frac{1}{1+x^{2}}$ the above becomes

$$
\frac{1}{1+x_{0}^{2}}=F\left(x_{0}\right)
$$

From the above then (2) can be written as

$$
u(t, x)=\frac{e^{-t}}{1+(x+4 t)^{2}}
$$

## 8 Problem 2.2.3

Graph some of the characteristic lines for the following equation and write down the formula for the general solution
(b) $u_{t}+5 u_{x}=0$, (d) $u_{t}-4 u_{x}+u=0$

## Solution

### 8.1 Part b

$$
u_{t}+5 u_{x}=0
$$

Let $\xi$ be the characteristic variable defined such that $\xi=x-c t$. Where characteristic lines are given by $x=x_{0}+c t$. But $c=5$ in this problem. Hence characteristic lines are

$$
\begin{equation*}
x(t)=x_{0}+5 t \tag{1}
\end{equation*}
$$

And

$$
\xi=x-5 t
$$

Then $u_{t}-5 u_{x}=0$ is transformed to $v(t, \xi)$ as was done in earlier (will not be repeated) which results in

$$
u_{t}-5 u_{x}=\frac{\partial v}{\partial t}
$$

Therefore $\frac{\partial v}{\partial t}=0$ which has the general solution $v(t, \xi)=F(\xi)$ where $F$ is arbitrary function of $\xi$. Transforming back to $u(t, x)$ gives

$$
u(t, x)=F(x-5 t)
$$

On the characteristic lines given by (1) the solution $u(t, x)$ is constant. The slope of the characteristic lines is 5 and intercept is $x_{0}$. The following is a plot of few lines using different values of $x_{0}$.


Figure 1: Showing some characteristic lines for part b

### 8.2 Part d

$$
u_{t}-4 u_{x}+u=0
$$

Let $\xi$ be the characteristic variable defined such that $\xi=x-c t$. Where characteristic lines are given by $x=x_{0}+c t$. But $c=-4$ in this problem. Hence characteristic lines are

$$
\begin{equation*}
x(t)=x_{0}-4 t \tag{1}
\end{equation*}
$$

And

$$
\xi=x+4 t
$$

Then $u_{t}-4 u_{x}$ is transformed to $v(t, \xi)$ as was done in earlier (will not be repeated) which
results in

$$
u_{t}-4 u_{x}=\frac{\partial v}{\partial t}
$$

Therefore the original PDE becomes $\frac{\partial v}{\partial t}+v=0$, where $u$ is replaced by $v$. This is linear first order ODE which has the solution $v(t, \xi)=e^{-t} F(\xi)$ where $F$ is arbitrary function of $\xi$. Transforming back to $u(t, x)$ gives the general solution as

$$
u(t, x)=e^{-t} F(x+4 t)
$$

The following is a plot of few characteristic lines $x=x_{0}-4 t$ using different values of $x_{0}$.


Figure 2: Showing some characteristic lines for part d

## 9 Problem 2.2.5

Solve $u_{t}+2 u_{x}=\sin x, u(0, x)=\sin x$

## Solution

Let $\xi$ be the characteristic variable defined such that $\xi=x-c t$. Where characteristic lines are given by $x=x_{0}+c t$. But $c=2$ in this problem. Hence characteristic lines are

$$
\begin{equation*}
x=x_{0}+2 t \tag{1}
\end{equation*}
$$

And

$$
\xi=x-2 t
$$

Then $u_{t}+2 u_{x}$ is transformed to $v(t, \xi)$ as was done in earlier (will not be repeated) which results in

$$
u_{t}+2 u_{x}=\frac{\partial v}{\partial t}
$$

Substituting this into the original PDE gives

$$
\frac{\partial v(t, \xi)}{\partial t}=\sin (\xi+2 t)
$$

Integrating w.r.t $t$ gives

$$
\begin{aligned}
v(t, \xi) & =\int \sin (\xi+2 t) d t+F(\xi) \\
& =-\frac{\cos (\xi+2 t)}{2}+F(\xi)
\end{aligned}
$$

Transforming back to $u(t, x)$ gives

$$
\begin{align*}
u(t, x) & =-\frac{\cos (x-2 t+2 t)}{2}+F(x-2 t) \\
& =\frac{-1}{2} \cos (x)+F(x-2 t) \tag{1}
\end{align*}
$$

When $t=0, u(0, x)=\sin x$, therefore the above becomes

$$
\begin{aligned}
& \sin x_{0}=F\left(x_{0}\right)-\frac{1}{2} \cos x_{0} \\
& F\left(x_{0}\right)=\sin x_{0}+\frac{1}{2} \cos x_{0}
\end{aligned}
$$

Therefore the solution (1) becomes

$$
\begin{aligned}
u(t, x) & =\left(\sin (x-2 t)+\frac{1}{2} \cos (x-2 t)\right)-\frac{1}{2} \cos x \\
& =\sin (x-2 t)+\frac{1}{2} \cos (x-2 t)-\frac{1}{2} \cos x
\end{aligned}
$$

## 10 Problem 2.2.9

(a) Prove that if the initial data is bounded, $|f(x)| \leq M$ for all $x \in \mathbb{R}$, then the solution to the damped transport equation (2.14) $u_{t}+c u_{x}+a u=0$ with $a>0$ satisfies $u(t, x) \rightarrow 0$ as $t \rightarrow \infty$. (b) Find a solution to (2.14) that is defined for all $(t, x)$ but does not satisfy $u(t, x) \rightarrow 0$ as $t \rightarrow \infty$.

Solution

### 10.1 Part(a)

$u_{t}+c u_{x}+a u=0$ is solved to show what is required. Let $\xi$ be the characteristic variable defined such that $\xi=x-c t$. Where characteristic lines are given by $x=x_{0}+c t$. Hence characteristic lines are

$$
\begin{equation*}
x=x_{0}+c t \tag{1}
\end{equation*}
$$

And

$$
\xi=x-c t
$$

Then $u_{t}+c u_{x}$ is transformed to $v(t, \xi)$ as was done in earlier (will not be repeated) which results in

$$
u_{t}+c u_{x}=\frac{\partial v}{\partial t}
$$

Substituting this into the original PDE gives

$$
\frac{\partial v}{\partial t}+a v=0
$$

Where $u$ is replaced by $v$. This can be viewed as first order linear ODE since it depends on $t$ only. Its solution is $v(t, \xi)=e^{-a t} F(\xi)$ where $F$ is arbitrary function of $\xi$. Transforming back to $u(t, x)$ gives

$$
\begin{equation*}
u(t, x)=e^{-a t} F(x-c t) \tag{1}
\end{equation*}
$$

At $t=0$ initial data is $f(x)$. Hence the above becomes at $t=0$

$$
f(x)=F(x)
$$

Hence (1) now becomes

$$
\begin{equation*}
u(t, x)=e^{-a t} f(x-c t) \tag{2}
\end{equation*}
$$

But since $|f(x)|$ is bounded, and since $a>0$ then $e^{-a t} \rightarrow 0$ as $t \rightarrow \infty$. Which implies the solution itself $u(t, x)$ goes to zero as well. This is the reason why initial data needed to be bounded for this to happen.

### 10.2 Part (b)

Keeping $a>0$. If initial data have the form $f(x) e^{-b x}$ where $|b|>a$, then at $t=0$ the solution found in (1) becomes

$$
f\left(x_{0}\right) e^{-b x_{0}}=F\left(x_{0}\right)
$$

Then the solution (2) now becomes, after replacing $x_{0}$ by $x-c t$

$$
\begin{aligned}
u(t, x) & =e^{-a t} e^{-b(x-c t)} f(x-c t) \\
& =e^{-a t+b c t} e^{-b x} f(x-c t) \\
& =e^{(b c-a) t} e^{-b x} f(x-c t)
\end{aligned}
$$

The problem is asking to show that this does not go to zero for all $x \in \mathbb{R}$ as $t \rightarrow \infty$. Since $|b|>a$ then $b c-a$ is positive quantity ( $c$ is assumed positive) $\sqrt{1}$
Therefore $e^{(b c-a) t}$ will blow up as $t \rightarrow \infty$. And therefore the whole solution will not go to zero. For any $x$, no matter how large $x$ is, a large enough $t$ can be found to make the product $e^{(b c-a) t} e^{-b x}$ blow up.

[^0]
[^0]:    ${ }^{1}$ If $c$ was negative then initial data could be choosen to be $f(x) e^{b x}$ where $|b|>a$ which will lead to same result.

