2.10 HW 10

  2.10.1 Problem 1
  2.10.2 Problem 7.1.1 f
  2.10.3 Problem 7.1.3 (a,b)
  2.10.4 Problem 7.1.13
  2.10.5 Problem 7.1.20 (a)
  2.10.6 Problem 7.2.2 (a)
  2.10.7 Problem 7.2.3 (d)
  2.10.8 Problem 7.2.12
  2.10.9 Problem 7.3.4
  2.10.10 Key solution for HW 10
PDF (letter size)
PDF (legal size)

2.10.1 Problem 1

Show that (assuming sufficient smoothness of the domain and the data) \(u\) is a solution to the Dirichlet boundary value problem\[ -\Delta u=f \] In \(\Omega \) with B.C. \(u=g\) on \(\partial \Omega \) iff \(u\) is a minimizer of the energy functional, that is\[ E\left ( u\right ) =\min \left \{ E\left ( v\right ) :v\in C^{2}\left ( \bar{\Omega }\right ) \right \} \text{ such that }u=g\text{ on }\partial \Omega \] Here\[ E\left ( u\right ) =\int _{\Omega }\left ( \frac{1}{2}\left \vert \nabla u\right \vert ^{2}-fu\right ) dA \] (note, I will be using \(dA\) in the above integral assuming we are in \(\mathbb{R} ^{2}\). But the above can also be \(dV\) for \(\mathbb{R} ^{3}\) just as well and nothing will change in the derivation below. This is easier that writing \(dx\) and saying that \(x\) is a vector).

Solution

Since the proof is an iff, then we need to show both direction.

Forward direction Given that \(u\) solves \begin{equation} -\Delta u=f \tag{1} \end{equation} with \(\left . u\right \vert _{\partial \Omega }=g\). Then we need to show that \(E\left ( v\right ) \geq E\left ( u\right ) \) for all \(v\in C^{2}\left ( \bar{\Omega }\right ) \) that also satisfy same B.C.

Multiplying both sides of (1) by \(u-v\) and integrating over the domain gives\begin{equation} -\int _{\Omega }\left ( \Delta u\right ) \left ( u-v\right ) dA=\int _{\Omega }\left ( u-v\right ) fdA \tag{2} \end{equation} For the left integral \(\int _{\Omega }\left ( \Delta u\right ) \left ( u-v\right ) dA\), we will do integration by parts. Let \(\Delta u\equiv dV,u-v=U\), then \(\int _{\Omega }UdV=\int _{\partial \Omega }UV-\int _{\Omega }VdU\). Therefore \(dU=\nabla \left ( u-v\right ) \) and \(V=\nabla u\). After applying integration by parts the (2) now becomes\[ -\left ( \int _{\partial \Omega }\left ( u-v\right ) \frac{\partial u}{\partial \mathbf{n}}\ dL-\int _{\Omega }\nabla u\cdot \nabla \left ( u-v\right ) dA\right ) =\int _{\Omega }\left ( u-v\right ) fdA \] But \(\int _{\partial \Omega }\left ( u-v\right ) \frac{\partial u}{\partial \mathbf{n}}\ dL=0\) because \(u=v\) on the boundary \(\partial \Omega \,\) as both are \(g\). The above now simplifies to\begin{align*} \int _{\Omega }\nabla u\cdot \nabla \left ( u-v\right ) \ dA & =\int _{\Omega }\left ( uf-vf\right ) \ dA\\ \int _{\Omega }\nabla u\cdot \left ( \nabla u-\nabla v\right ) \ dA & =\int _{\Omega }\left ( uf-vf\right ) \ dA\\ \int _{\Omega }\left \vert \nabla u\right \vert ^{2}-\nabla u\cdot \nabla v\ dA & =\int _{\Omega }\left ( uf-vf\right ) \ dA\\ \int _{\Omega }\left \vert \nabla u\right \vert ^{2}-\int _{\Omega }fu\ dA & =\int _{\Omega }\left ( \nabla u\cdot \nabla v\right ) -vf\ dA \end{align*}

Now we use Schwarz triangle inequality and write \(\nabla u\cdot \nabla v\leq \frac{1}{2}\left ( \left \vert \nabla u\right \vert ^{2}+\left \vert \nabla v\right \vert ^{2}\right ) \). This comes from using \(ab\leq \frac{1}{2}\left ( a^{2}+b^{2}\right ) \). Using this in the RHS of the above gives

\begin{align*} \int _{\Omega }\left \vert \nabla u\right \vert ^{2}\ dA-\int _{\Omega }fu\ dA & \leq \int _{\Omega }\frac{1}{2}\left ( \left \vert \nabla u\right \vert ^{2}+\left \vert \nabla v\right \vert ^{2}\right ) -fv\ dA\\ \int _{\Omega }\left \vert \nabla u\right \vert ^{2}\ dA-\int _{\Omega }fu\ dA & \leq \int _{\Omega }\frac{1}{2}\left \vert \nabla u\right \vert ^{2}dA+\left ( \frac{1}{2}\int _{\Omega }\left \vert \nabla v\right \vert ^{2}-fv\ dA\right ) \\ \int _{\Omega }\frac{1}{2}\left \vert \nabla u\right \vert ^{2}dA-\int _{\Omega }fu\ dA & \leq \frac{1}{2}\int _{\Omega }\left \vert \nabla v\right \vert ^{2}-fv\ dA\\ \int _{\Omega }\frac{1}{2}\left \vert \nabla u\right \vert ^{2}-fu\ dA & \leq \frac{1}{2}\int _{\Omega }\left \vert \nabla v\right \vert ^{2}-fv\ dA \end{align*}

But by definition \(\int _{\Omega }\frac{1}{2}\left \vert \nabla u\right \vert ^{2}-fu\ dA=E\left ( u\right ) \) and \(\frac{1}{2}\int _{\Omega }\left \vert \nabla v\right \vert ^{2}-fv\ dA=E\left ( v\right ) \), therefore the above becomes\[ E\left ( u\right ) \leq E\left ( v\right ) \] Which is what we wanted to show. Now we will do the other direction.

Reverse direction Given that \(u\) minimizes energy among all test functions, i.e. given that \(E\left ( u\right ) =\min E\left ( w\right ) \), then need to show that \(-\Delta u=f\).

Consider \(w=u+\varepsilon v\) where \(v\) is any test function \(v\in C^{2}\left ( \bar{\Omega }\right ) \) and \(v=g\) at \(\partial \Omega \). Hence \[ \min \left ( E\left ( w\right ) \right ) =\min \left ( E\left ( u+\varepsilon v\right ) \right ) \] Therefore \(\min \left ( E\left ( u+\varepsilon v\right ) \right ) \) is achieved when \(\varepsilon =0\), since this then gives \(E\left ( u\right ) \) which by assumption is the minimum. Therefore\[ \frac{d}{d\varepsilon }E\left ( u+\varepsilon v\right ) =0 \] At \(\varepsilon =0\). But the above can be written as the following, using the definition of energy\begin{align} \frac{d}{d\varepsilon }\left ( \int _{\Omega }\frac{1}{2}\left \vert \nabla \left ( u+\varepsilon v\right ) \right \vert ^{2}-f\left ( u+\varepsilon v\right ) \ dA\right ) & =0\nonumber \\ \frac{d}{d\varepsilon }\left ( \int _{\Omega }\frac{1}{2}\left ( \nabla \left ( u+\varepsilon v\right ) \cdot \nabla \left ( u+\varepsilon v\right ) \right ) -f\left ( u+\varepsilon v\right ) \ dA\right ) & =0\tag{3} \end{align}

Expanding \(\nabla \left ( u+\varepsilon v\right ) \cdot \nabla \left ( u+\varepsilon v\right ) \) gives \begin{align} \nabla \left ( u+\varepsilon v\right ) \cdot \nabla \left ( u+\varepsilon v\right ) & =\left ( \nabla u+\varepsilon \nabla v\right ) \cdot \left ( \nabla u+\varepsilon \nabla v\right ) \nonumber \\ & =\left \vert \nabla u\right \vert ^{2}+2\varepsilon \nabla u\cdot \nabla v+\varepsilon ^{2}\left \vert \nabla v\right \vert ^{2}\tag{4} \end{align}

Substituting (4) into (3) gives\[ \frac{d}{d\varepsilon }\left ( \int _{\Omega }v\left ( \left \vert \nabla u\right \vert ^{2}+2\varepsilon \nabla u\cdot \nabla v+\varepsilon ^{2}\left \vert \nabla v\right \vert ^{2}\right ) -fu-\varepsilon fv\ dA\right ) =0 \] Now we move the derivative inside the take derivative w.r.t. \(\varepsilon \) giving\[ \left ( \int _{\Omega }\frac{1}{2}\left ( 2\nabla u\cdot \nabla v+2\varepsilon \left \vert \nabla v\right \vert ^{2}\right ) -fv\ dA\right ) =0 \] Evaluate at \(\varepsilon =0\) the above becomes\[ \int _{\Omega }\left ( \nabla u\cdot \nabla v\right ) dA-\int _{\Omega }fv\ dA=0 \] Integration by parts for the first integral. Let \(\nabla u=U,dV=\nabla v\), then \(\int _{\Omega }UdV=\int _{\partial \Omega }UV-\int _{\Omega }VdU\). Hence the above becomes\[ \left ( \int _{\partial \Omega }v\frac{\partial u}{\partial \mathbf{n}}\ dL-\int _{\Omega }v\Delta u\ dA\right ) -\int _{\Omega }fv\ dA=0 \] But \(v=0\) at boundary \(\partial \Omega \). The above simplifies to\begin{align*} -\int _{\Omega }v\Delta u\ dA-\int _{\Omega }fv\ dA & =0\\ \int _{\Omega }v\left ( -\Delta u\ -f\ \right ) dA & =0 \end{align*}

Since the above is true for all \(v\) test function then this implies that \(-\Delta u\ -f\ =0\) or \[ -\Delta u\ =f \] Which is what we wanted to show.

2.10.2 Problem 7.1.1 f

Find the Fourier transform of (f) \(f\left ( x\right ) =\left \{ \begin{array} [c]{ccc}e^{-x}\sin x & & x>0\\ 0 & & x\leq 0 \end{array} \right . \)

Solution

\begin{align} \hat{f}\left ( k\right ) & =\frac{1}{\sqrt{2\pi }}\int _{-\infty }^{\infty }f\left ( x\right ) e^{-ikx}dx\nonumber \\ & =\frac{1}{\sqrt{2\pi }}\int _{0}^{\infty }e^{-x}\sin xe^{-ikx}dx\nonumber \\ & =\frac{1}{\sqrt{2\pi }}\int _{0}^{\infty }\sin xe^{-ikx-x}dx\nonumber \\ & =\frac{1}{\sqrt{2\pi }}\int _{0}^{\infty }\sin xe^{-x\left ( 1+ik\right ) }dx \tag{1} \end{align}

Integration by parts. \(\int udv=uv-\int vdu\). Let \(dv=e^{-x\left ( 1+ik\right ) },v=\frac{e^{-x\left ( 1+ik\right ) }}{-\left ( 1+ik\right ) },u=\sin x,du=\cos x\). Hence\begin{align*} I & =\int _{0}^{\infty }\sin xe^{-x\left ( 1+ik\right ) }dx\\ & =\left [ \sin x\frac{e^{-x\left ( 1+ik\right ) }}{-\left ( 1+ik\right ) }\right ] _{0}^{\infty }-\int _{0}^{\infty }\cos x\frac{e^{-x\left ( 1+ik\right ) }}{-\left ( 1+ik\right ) }dx\\ & =\frac{-1}{1+ik}\left [ \sin xe^{-x\left ( 1+ik\right ) }\right ] _{0}^{\infty }+\frac{1}{1+ik}\int _{0}^{\infty }\cos xe^{-x\left ( 1+ik\right ) }dx \end{align*}

But \(e^{-x\left ( 1+ik\right ) }=e^{-x}e^{-ikx}\) and this goes to zero as \(x\rightarrow \infty \) and since \(\sin x=0\) at \(x=0\) then the first term above is zero. The above reduces to\[ I=\frac{1}{1+ik}\int _{0}^{\infty }\cos xe^{-x\left ( 1+ik\right ) }dx \] Integration by parts. \(\int udv=uv-\int vdu\). Let \(dv=e^{-x\left ( 1+ik\right ) },v=\frac{e^{-x\left ( 1+ik\right ) }}{-\left ( 1+ik\right ) },u=\cos x,du=-\sin x\). The above becomes\begin{align*} I & =\frac{1}{1+ik}\left ( \left [ \cos x\frac{e^{-x\left ( 1+ik\right ) }}{-\left ( 1+ik\right ) }\right ] _{0}^{\infty }-\int _{0}^{\infty }\left ( -\sin x\right ) \frac{e^{-x\left ( 1+ik\right ) }}{-\left ( 1+ik\right ) }dx\right ) \\ & =\frac{1}{1+ik}\left ( \left [ \cos x\frac{e^{-x\left ( 1+ik\right ) }}{-\left ( 1+ik\right ) }\right ] _{0}^{\infty }-\frac{1}{1+ik}\int _{0}^{\infty }\sin xe^{-x\left ( 1+ik\right ) }dx\right ) \end{align*}

But \(\int _{0}^{\infty }\sin xe^{-x\left ( 1+ik\right ) }dx=I\). The above becomes\begin{align*} I & =\frac{1}{1+ik}\left ( \left [ \cos x\frac{e^{-x\left ( 1+ik\right ) }}{-\left ( 1+ik\right ) }\right ] _{0}^{\infty }-\frac{1}{1+ik}I\right ) \\ & =\frac{1}{1+ik}\left [ \cos x\frac{e^{-x\left ( 1+ik\right ) }}{-\left ( 1+ik\right ) }\right ] _{0}^{\infty }-\left ( \frac{1}{1+ik}\right ) ^{2}I\\ I+\left ( \frac{1}{1+ik}\right ) ^{2}I & =\frac{-1}{\left ( 1+ik\right ) ^{2}}\left [ \cos xe^{-x\left ( 1+ik\right ) }\right ] _{0}^{\infty } \end{align*}

Now \(\left [ \cos xe^{-x\left ( 1+ik\right ) }\right ] _{0}^{\infty }=0-1=-1\). Hence the above reduces to\begin{align*} I\left ( 1+\left ( \frac{1}{1+ik}\right ) ^{2}\right ) & =\frac{1}{\left ( 1+ik\right ) ^{2}}\\ I & =\frac{\frac{1}{\left ( 1+ik\right ) ^{2}}}{1+\left ( \frac{1}{1+ik}\right ) ^{2}}\\ & =\frac{1}{1+\left ( 1+ik\right ) ^{2}}\\ & =\frac{1}{2-k^{2}+2ik} \end{align*}

Therefore \[ \int _{0}^{\infty }\sin xe^{-x\left ( 1+ik\right ) }dx=\frac{1}{2-k^{2}+2ik}\] Using (1) the  Fourier transform becomes\[ \hat{f}\left ( k\right ) =\frac{1}{\sqrt{2\pi }}\frac{1}{2-k^{2}+2ik}\] This can be written as real and imaginary parts\begin{align*} \hat{f}\left ( k\right ) & =\frac{1}{\sqrt{2\pi }}\frac{\left ( 2-k^{2}\right ) -2ik}{\left ( \left ( 2-k^{2}\right ) +2ik\right ) \left ( \left ( 2-k^{2}\right ) -2ik\right ) }\\ & =\frac{1}{\sqrt{2\pi }}\frac{\left ( 2-k^{2}\right ) -2ik}{\left ( 2-k^{2}\right ) ^{2}+4k^{2}}\\ & =\frac{1}{\sqrt{2\pi }}\left ( \frac{2-k^{2}}{k^{4}+4}-i\frac{2k}{k^{4}+4}\right ) \end{align*}

2.10.3 Problem 7.1.3 (a,b)

   2.10.3.1 Part a
   2.10.3.2 Part b

Find the inverse Fourier transform of the function \(\frac{1}{k+c}\) when (a) \(c=a\) is real (b) \(c=ib\) is pure imaginary.

Solution

2.10.3.1 Part a

Using shifting property where \(\mathcal{F}\left [ f\left ( x\right ) \right ] =\hat{f}\left ( k\right ) \) and let \(\hat{f}\left ( k\right ) =\frac{1}{k}\) then by shifting property \(\mathcal{F}\left [ e^{iax}f\left ( x\right ) \right ] =\hat{f}\left ( k-a\right ) \), (Theorem 7.4) therefore\begin{align} \mathcal{F}\left [ e^{-iax}f\left ( x\right ) \right ] & =\hat{f}\left ( k+a\right ) \nonumber \\ & =\frac{1}{k+a} \tag{1} \end{align}

We now just need to find \(f\left ( x\right ) \). From table of Fourier transforms on page 272, we see that \(\mathcal{F}\left [ \operatorname{sgn}\left ( x\right ) \right ] =\frac{1}{i}\sqrt{\frac{2}{\pi }}\frac{1}{k}\). Hence \[\mathcal{F}\left [ i\sqrt{\frac{\pi }{2}}\operatorname{sgn}\left ( x\right ) \right ] =\frac{1}{k}\] Therefore \(f\left ( x\right ) =i\sqrt{\frac{\pi }{2}}\operatorname{sgn}\left ( x\right ) \). Substituting this back into (1) gives\[\mathcal{F}\left [ ie^{-iax}\sqrt{\frac{\pi }{2}}\operatorname{sgn}\left ( x\right ) \right ] =\frac{1}{k+a}\] Or\[\mathcal{F}^{-1}\left [ \frac{1}{k+a}\right ] =ie^{-iax}\sqrt{\frac{\pi }{2}}\operatorname{sgn}\left ( x\right ) \]

2.10.3.2 Part b

Using shifting property, given that \(\mathcal{F}\left ( f\left ( x\right ) \right ) =\hat{f}\left ( k\right ) \), let \(\hat{f}\left ( k\right ) =\frac{1}{k}\) then by shifting property (Theorem 7.4) \(\mathcal{F}\left [ e^{i(ib)x}f\left ( x\right ) \right ] =\hat{f}\left ( k-ib\right ) \), then\begin{align} \mathcal{F}\left [ e^{bx}f\left ( x\right ) \right ] & =\hat{f}\left ( k+ib\right ) \nonumber \\ & =\frac{1}{k+ib} \tag{1} \end{align}

We now just need to find \(f\left ( x\right ) \). From table of Fourier transforms on page 272, we see that \(\mathcal{F}\left [ \operatorname{sgn}\left ( x\right ) \right ] =\frac{1}{i}\sqrt{\frac{2}{\pi }}\frac{1}{k}\). Hence \[\mathcal{F}\left [ i\sqrt{\frac{\pi }{2}}\operatorname{sgn}\left ( x\right ) \right ] =\frac{1}{k}\] Therefore \(f\left ( x\right ) =i\sqrt{\frac{\pi }{2}}\operatorname{sgn}\left ( x\right ) \). Substituting this back into (1) gives\[\mathcal{F}\left [ ie^{bx}\sqrt{\frac{\pi }{2}}\operatorname{sgn}\left ( x\right ) \right ] =\frac{1}{k+ib}\] Or\[\mathcal{F}^{-1}\left [ \frac{1}{k+ib}\right ] =ie^{bx}\sqrt{\frac{\pi }{2}}\operatorname{sgn}\left ( x\right ) \]

2.10.4 Problem 7.1.13

   2.10.4.1 Part a
   2.10.4.2 Part b

Prove the Shift Theorem 7.4 which is

Theorem 7.4: if \(f\left ( x\right ) \) has Fourier transform \(\hat{f}\left ( k\right ) \), then the Fourier transform of the shifted function \(f\left ( x-\xi \right ) \) is \(e^{-ik\xi }\hat{f}\left ( k\right ) \). Similarly the transform of the product function \(e^{i\alpha x}f\left ( x\right ) \) for real \(\alpha \) is the shifted transform \(\hat{f}\left ( k-\alpha \right ) \) (note: using \(\alpha \) in place of the strange second \(k\) that the book uses)

2.10.4.1 Part a

Showing if \(f\left ( x\right ) \) has Fourier transform \(\hat{f}\left ( k\right ) \), then Fourier transform of the shifted function \(f\left ( x-\xi \right ) \) is \(e^{-ik\xi }\hat{f}\left ( k\right ) \). From definition, the Fourier transform of \(f\left ( x-\xi \right ) \) is given by \[\mathcal{F}\left [ f\left ( x-\xi \right ) \right ] =\frac{1}{\sqrt{2\pi }}\int _{-\infty }^{\infty }f\left ( x-\xi \right ) e^{-ikx}dx \] Let \(x-\xi =u\). Then \(\frac{du}{dx}=1\). The above becomes (limits do not change)\begin{align*} \mathcal{F}\left [ f\left ( x-\xi \right ) \right ] & =\frac{1}{\sqrt{2\pi }}\int _{-\infty }^{\infty }f\left ( u\right ) e^{-ik\left ( u+\xi \right ) }du\\ & =\frac{1}{\sqrt{2\pi }}\int _{-\infty }^{\infty }f\left ( u\right ) e^{-iku}e^{-ik\xi }du\\ & =e^{-ik\xi }\overset{\hat{f}\left ( k\right ) }{\overbrace{\frac{1}{\sqrt{2\pi }}\int _{-\infty }^{\infty }f\left ( u\right ) e^{-iku}du}} \end{align*}

Therefore\[\mathcal{F}\left [ f\left ( x-\xi \right ) \right ] =e^{-ik\xi }\hat{f}\left ( k\right ) \] Which is what asked to show.

2.10.4.2 Part b

Showing that the Fourier transform of \(e^{i\alpha x}f\left ( x\right ) \) is \(\hat{f}\left ( k-\alpha \right ) \). From definition, the Fourier transform of \(e^{i\alpha x}f\left ( x\right ) \) is\begin{align*} \mathcal{F}\left [ e^{i\alpha x}f\left ( x\right ) \right ] & =\frac{1}{\sqrt{2\pi }}\int _{-\infty }^{\infty }e^{i\alpha x}f\left ( x\right ) e^{-ikx}dx\\ & =\frac{1}{\sqrt{2\pi }}\int _{-\infty }^{\infty }f\left ( x\right ) e^{-ix\left ( k-\alpha \right ) }dx \end{align*}

But \(\frac{1}{\sqrt{2\pi }}\int _{-\infty }^{\infty }f\left ( x\right ) e^{-ix\left ( k-\alpha \right ) }dx\) is \(\hat{f}\left ( k-\alpha \right ) \) by replacing \(k\) with \(k-\alpha \) in the definition of Fourier transform. Hence\[\mathcal{F}\left [ e^{i\alpha x}f\left ( x\right ) \right ] =\hat{f}\left ( k-\alpha \right ) \] Which is what asked to show.

2.10.5 Problem 7.1.20 (a)

   2.10.5.1 Part a
   2.10.5.2 Part b

The two-dimensional Fourier transform of a function \(f\left ( x,y\right ) \) defined for \(\left ( x,y\right ) \in \mathbb{R} ^{2}\) is \begin{align*} \mathcal{F}\left [ f\left ( x,y\right ) \right ] & =\hat{f}\left ( k,l\right ) \\ & =\frac{1}{2\pi }\int _{-\infty }^{\infty }\int _{-\infty }^{\infty }f\left ( x,y\right ) e^{-i\left ( kx+ly\right ) }dxdy \end{align*}

(a) compute the Fourier transform of the following functions (i) \(e^{-\left \vert x\right \vert -\left \vert y\right \vert }\), (iii) The delta function \(\delta \left ( x-\xi \right ) \delta \left ( y-\eta \right ) \)

(b) Show that if \(f\left ( x,y\right ) =g\left ( x\right ) h\left ( y\right ) \) then \(\hat{f}\left ( k,l\right ) =\hat{g}\left ( k\right ) \hat{h}\left ( l\right ) \)

Solution

2.10.5.1 Part a

(i) The Fourier transform of \(e^{-\left \vert x\right \vert -\left \vert y\right \vert }\) is\begin{align} \hat{f}\left ( k,l\right ) & =\frac{1}{2\pi }\int _{-\infty }^{\infty }\int _{-\infty }^{\infty }e^{-\left \vert x\right \vert -\left \vert y\right \vert }e^{-i\left ( kx+ly\right ) }dxdy\nonumber \\ & =\frac{1}{2\pi }\int _{-\infty }^{\infty }\int _{-\infty }^{\infty }e^{-\left \vert x\right \vert }e^{-\left \vert y\right \vert }e^{-ikx}e^{-ily}dxdy\nonumber \\ & =\frac{1}{2\pi }\int _{-\infty }^{\infty }e^{-\left \vert y\right \vert }e^{-ily}\left ( \int _{-\infty }^{\infty }e^{-\left \vert x\right \vert }e^{-ikx}dx\right ) dy \tag{1} \end{align}

But \(\int _{-\infty }^{\infty }e^{-\left \vert x\right \vert }e^{-ikx}dx\) is the Fourier transform of \(f\left ( x\right ) =e^{-\left \vert x\right \vert }\) with \(\sqrt{2\pi }\) factor. In other words\[ \int _{-\infty }^{\infty }e^{-\left \vert x\right \vert }e^{-ikx}dx=\sqrt{2\pi }\hat{g}\left ( k\right ) \] Where \(\hat{g}\left ( k\right ) \) is used to indicate the Fourier transform of \(e^{-\left \vert x\right \vert }\). Hence (1) becomes\[ \hat{f}\left ( k,l\right ) =\frac{\sqrt{2\pi }}{2\pi }\hat{f}_{1}\left ( k\right ) \int _{-\infty }^{\infty }e^{-\left \vert y\right \vert }e^{-ily}dy \] But \(\int _{-\infty }^{\infty }e^{-\left \vert y\right \vert }e^{-ily}dy=\sqrt{2\pi }\hat{h}\left ( l\right ) \) Where \(\hat{h}\left ( l\right ) \) is used to indicate the Fourier transform of \(e^{-\left \vert y\right \vert }\). The above becomes\begin{align} \hat{f}\left ( k,l\right ) & =\frac{\sqrt{2\pi }}{2\pi }\hat{g}\left ( k\right ) \sqrt{2\pi }\hat{h}\left ( l\right ) \nonumber \\ & =\hat{g}\left ( k\right ) \hat{h}\left ( l\right ) \tag{2} \end{align}

So now we need to determine \(\hat{g}\left ( k\right ) \) and \(\hat{h}\left ( l\right ) \) and multiply the result. \begin{align*} \hat{g}\left ( k\right ) & =\frac{1}{\sqrt{2\pi }}\int _{-\infty }^{\infty }e^{-\left \vert x\right \vert }e^{-ikx}dx\\ & =\frac{1}{\sqrt{2\pi }}\left ( \int _{-\infty }^{0}e^{x}e^{-ikx}dx+\int _{0}^{\infty }e^{-x}e^{-ikx}dx\right ) \\ & =\frac{1}{\sqrt{2\pi }}\left ( \int _{-\infty }^{0}e^{-ikx+x}dx+\int _{0}^{\infty }e^{-ikx-x}dx\right ) \\ & =\frac{1}{\sqrt{2\pi }}\left ( \left [ \frac{e^{-ikx+x}}{1-ik}\right ] _{-\infty }^{0}+\left [ \frac{e^{-ikx-x}}{-1-ik}\right ] _{0}^{\infty }\right ) \\ & =\frac{1}{\sqrt{2\pi }}\left ( \frac{1}{1-ik}\left [ e^{-ikx}e^{x}\right ] _{-\infty }^{0}-\frac{1}{1+ik}\left [ e^{-ikx}e^{-x}\right ] _{0}^{\infty }\right ) \\ & =\frac{1}{\sqrt{2\pi }}\left ( \frac{1}{1-ik}\left ( 1-0\right ) -\frac{1}{1+ik}\left ( 0-1\right ) \right ) \\ & =\frac{1}{\sqrt{2\pi }}\left ( \frac{1}{1-ik}+\frac{1}{1+ik}\right ) \\ & =\frac{1}{\sqrt{2\pi }}\left ( \frac{\left ( 1+ik\right ) +\left ( 1-ik\right ) }{\left ( 1-ik\right ) \left ( 1+ik\right ) }\right ) \\ & =\frac{1}{\sqrt{2\pi }}\left ( \frac{2}{1+k^{2}}\right ) \\ & =\sqrt{\frac{2}{\pi }}\frac{1}{1+k^{2}} \end{align*}

Similarly\begin{align*} \hat{h}\left ( l\right ) & =\frac{1}{\sqrt{2\pi }}\int _{-\infty }^{\infty }e^{-\left \vert y\right \vert }e^{-ily}dy\\ & =\sqrt{\frac{2}{\pi }}\frac{1}{1+l^{2}} \end{align*}

Hence from (2) the Fourier transform of \(e^{-\left \vert x\right \vert -\left \vert y\right \vert }\) is \begin{align*} \hat{f}\left ( k,l\right ) & =\hat{g}\left ( k\right ) \hat{h}\left ( l\right ) \\ & =\sqrt{\frac{2}{\pi }}\frac{1}{1+k^{2}}\sqrt{\frac{2}{\pi }}\frac{1}{1+l^{2}}\\ & =\frac{2}{\pi }\frac{1}{\left ( 1+k^{2}\right ) \left ( 1+l^{2}\right ) } \end{align*}

(ii) The Fourier transform of \(\delta \left ( x-\xi \right ) \delta \left ( y-\eta \right ) \). First we find the Fourier transform of \(\delta \left ( x-\xi \right ) \) and then the Fourier transform of \(\delta \left ( y-\eta \right ) \)\begin{align*} \hat{g}\left ( k\right ) & =\frac{1}{\sqrt{2\pi }}\int _{-\infty }^{\infty }\delta \left ( x-\xi \right ) e^{-ikx}dx\\ & =\frac{1}{\sqrt{2\pi }}e^{-ik\xi } \end{align*}

And\begin{align*} \hat{h}\left ( l\right ) & =\frac{1}{\sqrt{2\pi }}\int _{-\infty }^{\infty }\delta \left ( y-\eta \right ) e^{-ily}dy\\ & =\frac{1}{\sqrt{2\pi }}e^{-il\eta } \end{align*}

Hence the Fourier transform of the product \(\delta \left ( x-\xi \right ) \delta \left ( y-\eta \right ) \) is (Using the product rule, which will be proofed in part b also).\begin{align*} \hat{f}\left ( k,l\right ) & =\hat{g}\left ( k\right ) \hat{h}\left ( l\right ) \\ & =\frac{1}{2\pi }e^{-ik\xi }e^{-il\eta } \end{align*}

The above could be rewritten in terms of trig functions using Euler relation if needed.

2.10.5.2 Part b

By definition, the Fourier transform of \(f\left ( x,y\right ) \) is\[ \hat{f}\left ( k,l\right ) =\frac{1}{2\pi }\int _{-\infty }^{\infty }\int _{-\infty }^{\infty }f\left ( x,y\right ) e^{-i\left ( kx+ly\right ) }dxdy \] But \(f\left ( x,y\right ) =g\left ( x\right ) h\left ( y\right ) \). Hence the above becomes\begin{align*} \hat{f}\left ( k,l\right ) & =\frac{1}{2\pi }\int _{-\infty }^{\infty }\int _{-\infty }^{\infty }g\left ( x\right ) h\left ( y\right ) e^{-i\left ( kx+ly\right ) }dxdy\\ & =\frac{1}{2\pi }\int _{-\infty }^{\infty }\int _{-\infty }^{\infty }g\left ( x\right ) h\left ( y\right ) e^{-ikx}e^{-ily}dxdy\\ & =\frac{1}{2\pi }\int _{-\infty }^{\infty }h\left ( y\right ) e^{-ily}\left ( \int _{-\infty }^{\infty }g\left ( x\right ) e^{-ikx}dx\right ) dy \end{align*}

But \(\int _{-\infty }^{\infty }g\left ( x\right ) e^{-ikx}dx=\sqrt{2\pi }\hat{g}\left ( k\right ) \). The above reduces to\[ \hat{f}\left ( k,l\right ) =\frac{1}{2\pi }\sqrt{2\pi }\hat{g}\left ( k\right ) \int _{-\infty }^{\infty }h\left ( y\right ) e^{-ily}dy \] But \(\int _{-\infty }^{\infty }h\left ( y\right ) e^{-ily}dy=\sqrt{2\pi }\hat{h}\left ( l\right ) \). Hence the above becomes\begin{align*} \hat{f}\left ( k,l\right ) & =\frac{1}{2\pi }\sqrt{2\pi }\hat{g}\left ( k\right ) \sqrt{2\pi }\hat{h}\left ( l\right ) \\ & =\hat{g}\left ( k\right ) \hat{h}\left ( l\right ) \end{align*}

Which is what asked to show.

2.10.6 Problem 7.2.2 (a)

   2.10.6.1 Part a

Find the Fourier transform of (a) the error function \(\operatorname{erf}\left ( x\right ) =\frac{2}{\sqrt{\pi }}\int _{0}^{x}e^{-z^{2}}dz\)

Solution

2.10.6.1 Part a

Using\begin{equation} 1+\operatorname{erf}\left ( x\right ) =\frac{2}{\sqrt{\pi }}\int _{-\infty }^{x}e^{-z^{2}}dz \tag{1} \end{equation} Taking Fourier transform of both sides, and using the known relation from tables which says \[\mathcal{F}\left [ \int _{-\infty }^{x}f\left ( u\right ) du\right ] =\frac{1}{ik}\hat{f}\left ( k\right ) +\pi \hat{f}\left ( 0\right ) \delta \left ( k\right ) \] And using that Fourier transform of \(1\) is \(\sqrt{2\pi }\delta \left ( k\right ) \) then (1) becomes\[ \sqrt{2\pi }\delta \left ( k\right ) +\mathcal{F}\left [ \operatorname{erf}\left ( x\right ) \right ] =\frac{2}{\sqrt{\pi }}\left ( \frac{1}{ik}\hat{f}\left ( k\right ) +\pi \hat{f}\left ( 0\right ) \delta \left ( k\right ) \right ) \] Where \(\hat{f}\left ( k\right ) \) is the Fourier transform of \(e^{-u^{2}}\) (Gaussian) we derived in class as \(e^{-u^{2}}\Leftrightarrow \frac{1}{\sqrt{2}}e^{\frac{-k^{2}}{4}}\). The above becomes\begin{align*} \sqrt{2\pi }\delta \left ( k\right ) +\mathcal{F}\left [ \operatorname{erf}\left ( x\right ) \right ] & =\frac{2}{\sqrt{\pi }}\left ( \frac{1}{ik}\frac{1}{\sqrt{2}}e^{\frac{-k^{2}}{4}}+\pi \left [ \frac{1}{\sqrt{2}}e^{\frac{-k^{2}}{4}}\right ] _{k=0}\delta \left ( k\right ) \right ) \\ & =\frac{2}{\sqrt{\pi }}\left ( \frac{1}{ik}\frac{1}{\sqrt{2}}e^{\frac{-k^{2}}{4}}+\frac{\pi }{\sqrt{2}}\delta \left ( k\right ) \right ) \\ & =\frac{2}{\sqrt{\pi }}\frac{1}{ik}\frac{1}{\sqrt{2}}e^{\frac{-k^{2}}{4}}+\sqrt{2\pi }\delta \left ( k\right ) \end{align*}

Therefore the above simplifies to\begin{align*} \mathcal{F}\left [ \operatorname{erf}\left ( x\right ) \right ] & =\frac{2}{\sqrt{\pi }}\frac{1}{ik}\frac{1}{\sqrt{2}}e^{\frac{-k^{2}}{4}}\\ & =\sqrt{\frac{2}{\pi }}\frac{1}{ik}e^{\frac{-k^{2}}{4}}\\ & =-i\sqrt{\frac{2}{\pi }}\frac{1}{k}e^{\frac{-k^{2}}{4}} \end{align*}

2.10.7 Problem 7.2.3 (d)

Find the inverse Fourier transform of the following functions (d) \(\frac{k^{2}}{k-i}\)

Solution

Using property that \begin{align} \mathcal{F}\left [ f^{\prime }\left ( x\right ) \right ] & =ik\hat{f}\left ( k\right ) \nonumber \\\mathcal{F}\left [ f^{\prime \prime }\left ( x\right ) \right ] & =-k^{2}\hat{f}\left ( k\right ) \tag{1} \end{align}

Where in the above \(\mathcal{F}\left [ f\left ( x\right ) \right ] =\hat{f}\left ( k\right ) \). Comparing the above with \(\frac{k^{2}}{k-i}\), we see that \[ \hat{f}\left ( k\right ) =\frac{1}{k-i}\] Hence we need to find inverse Fourier transform of \(\frac{-1}{k-i}\) first in order to find \(f\left ( x\right ) \), and then take second derivative of the result.  Writing \begin{align*} \frac{1}{k-i} & =\frac{1}{i\left ( \frac{k}{i}-1\right ) }\\ & =\frac{1}{i\left ( -ik-1\right ) }\\ & =\frac{-1}{i\left ( ik+1\right ) }\\ & =i\frac{1}{\left ( 1+ik\right ) } \end{align*}

From table (page 272 in textbook) we see that \[\mathcal{F}^{-1}\left [ \frac{1}{\left ( ik+1\right ) }\right ] =\sqrt{2\pi }e^{-x}\sigma \left ( x\right ) \] Using \(a=1\) in the table entry. Where \(\sigma \left ( x\right ) \) is the step function. Hence \[ i\mathcal{F}^{-1}\left [ \frac{1}{\left ( ik+1\right ) }\right ] =i\sqrt{2\pi }e^{-x}\sigma \left ( x\right ) \] Therefore \[ f\left ( x\right ) =i\sqrt{2\pi }e^{-x}\sigma \left ( x\right ) \] Now we take derivative of the above (using product rule)\[ f^{\prime }\left ( x\right ) =-i\sqrt{2\pi }e^{-x}\sigma \left ( x\right ) +i\sqrt{2\pi }e^{-x}\delta \left ( x\right ) \] Where \(\delta \left ( x\right ) \) is added since derivative of \(\sigma \left ( x\right ) \) has jump discontinuity at \(x=0\). Taking one more derivative gives\begin{align*} f^{\prime \prime }\left ( x\right ) & =i\sqrt{2\pi }e^{-x}\sigma \left ( x\right ) -i\sqrt{2\pi }e^{-x}\delta \left ( x\right ) -i\sqrt{2\pi }e^{-x}\delta \left ( x\right ) +i\sqrt{2\pi }e^{-x}\delta ^{\prime }\left ( x\right ) \\ & =i\sqrt{2\pi }e^{-x}\sigma \left ( x\right ) -2i\sqrt{2\pi }e^{-x}\delta \left ( x\right ) +i\sqrt{2\pi }e^{-x}\delta ^{\prime }\left ( x\right ) \end{align*}

Therefore\[\mathcal{F}^{-1}\left [ \frac{k^{2}}{k-i}\right ] =i\sqrt{2\pi }e^{-x}\sigma \left ( x\right ) -2i\sqrt{2\pi }e^{-x}\delta \left ( x\right ) +i\sqrt{2\pi }e^{-x}\delta ^{\prime }\left ( x\right ) \]

2.10.8 Problem 7.2.12

   2.10.8.1 Part a
   2.10.8.2 Part b

(a) Explain why the Fourier transform of a \(2\pi \) periodic function \(f\left ( x\right ) \) is a linear combinations of delta functions \(\hat{f}\left ( k\right ) =\sum _{n=-\infty }^{\infty }c_{n}\delta \left ( k-n\right ) \) where \(c_{n}\) are the complex Fourier series coefficients (3.65) of \(f\left ( x\right ) \) on \(\left [ -\pi ,\pi \right ] \)\begin{equation} c_{n}=\left \langle f,e^{inx}\right \rangle =\frac{1}{2\pi }\int _{-\pi }^{\pi }f\left ( x\right ) e^{-inx}dx \tag{3.65} \end{equation} (b) Find the Fourier transform of the following periodic functions (i) \(\sin 2x\) (ii) \(\cos ^{3}x\) (iii) The \(2\pi \) periodic extension of \(f\left ( x\right ) =x\) (iv) The sawtooth function \(h\left ( x\right ) =x\operatorname{mod}1\). i.e. the fractional part of \(x\)

Solution

2.10.8.1 Part a

Since \(f\left ( x\right ) \) is periodic, then its can be expressed as\[ f\left ( x\right ) =\sum _{n=-\infty }^{\infty }c_{n}e^{in\left ( \frac{2\pi }{T}\right ) x}\] But the period \(T=2\pi \) and the above simplifies to\begin{equation} f\left ( x\right ) =\sum _{n=-\infty }^{\infty }c_{n}e^{inx} \tag{1} \end{equation} Taking the Fourier transform of the above gives\begin{equation} \hat{f}\left ( k\right ) =\frac{1}{\sqrt{2\pi }}\int _{-\infty }^{\infty }f\left ( x\right ) e^{-ikx}dx \tag{2} \end{equation} Substituting (1) into (2) gives\begin{align*} \hat{f}\left ( k\right ) & =\frac{1}{\sqrt{2\pi }}\int _{-\infty }^{\infty }\left ( \sum _{n=-\infty }^{\infty }c_{n}e^{inx}\right ) e^{-ikx}dx\\ & =\frac{1}{\sqrt{2\pi }}\int _{-\infty }^{\infty }\left ( \sum _{n=-\infty }^{\infty }c_{n}e^{-ix\left ( k-n\right ) }\right ) dx \end{align*}

Changing the order of summation and integration\begin{align} \hat{f}\left ( k\right ) & =\frac{1}{\sqrt{2\pi }}\sum _{n=-\infty }^{\infty }\left ( \int _{-\infty }^{\infty }c_{n}e^{-ix\left ( k-n\right ) }dx\right ) \nonumber \\ & =\frac{1}{\sqrt{2\pi }}\sum _{n=-\infty }^{\infty }c_{n}\left ( \int _{-\infty }^{\infty }e^{-ix\left ( k-n\right ) }dx\right ) \tag{3} \end{align}

But from tables we know that \(\mathcal{F}\left ( 1\right ) =\sqrt{2\pi }\delta \left ( k\right ) \). Which means that \[ \frac{1}{\sqrt{2\pi }}\int _{-\infty }^{\infty }e^{-ixk}dx=\sqrt{2\pi }\delta \left ( k\right ) \] Therefore, replacing \(k\) by \(k-n\) in the above gives\begin{align} \frac{1}{\sqrt{2\pi }}\int _{-\infty }^{\infty }e^{-ix\left ( k-n\right ) }dx & =\sqrt{2\pi }\delta \left ( k-n\right ) \nonumber \\ \int _{-\infty }^{\infty }e^{-ix\left ( k-n\right ) }dx & =\left ( 2\pi \right ) \delta \left ( k-n\right ) \tag{4} \end{align}

Substituting (4) into (3) gives\begin{align*} \hat{f}\left ( k\right ) & =\frac{1}{\sqrt{2\pi }}\sum _{n=-\infty }^{\infty }c_{n}\left ( 2\pi \right ) \delta \left ( k-n\right ) \\ & =\sqrt{2\pi }\sum _{n=-\infty }^{\infty }c_{n}\delta \left ( k-n\right ) \end{align*}

Note:  The books seems to have a typo. It gives the above without the factor \(\sqrt{2\pi }\) at the front.

2.10.8.2 Part b

(i) \(\sin 2x\). Since this is periodic, then \(c_{n}=\frac{1}{2\pi }\int _{-\pi }^{\pi }\sin \left ( 2x\right ) e^{-inx}dx\). For \(n=2\) this gives \(c_{2}=-\frac{i}{2}\) and for \(n=-2\) it gives \(c_{-2}=\frac{i}{2}\) and it is zero for all other \(n\) values due to orthogonality of \(\sin \) functions. Using the above result obtained in part (a)\begin{align*} \hat{f}\left ( k\right ) & =\sqrt{2\pi }\sum _{n=-\infty }^{\infty }c_{n}\delta \left ( k-n\right ) \\ & =\sqrt{2\pi }c_{-2}\delta \left ( k+2\right ) +\sqrt{2\pi }c_{2}\delta \left ( k-2\right ) \\ & =\sqrt{2\pi }\frac{i}{2}\delta \left ( k+2\right ) -\sqrt{2\pi }\frac{i}{2}\delta \left ( k-2\right ) \\ & =i\sqrt{\frac{\pi }{2}}\delta \left ( k+2\right ) -i\sqrt{\frac{\pi }{2}}\delta \left ( k-2\right ) \end{align*}

(ii) \(\cos ^{3}x\). Since this is periodic, then \(c_{n}=\frac{1}{2\pi }\int _{-\pi }^{\pi }\cos ^{3}\left ( x\right ) e^{-inx}dx\). But \(\cos ^{3}\left ( x\right ) =\frac{1}{4}\cos \left ( 3x\right ) +\frac{3}{4}\cos \left ( x\right ) \). Hence only \(n=\pm 1,n=\pm 3\) will have coefficients and the rest are zero. \begin{align*} c_{-1} & =\frac{1}{2\pi }\int _{-\pi }^{\pi }\frac{3}{4}\cos \left ( x\right ) e^{ix}dx=\frac{3}{8}\\ c_{1} & =\frac{1}{2\pi }\int _{-\pi }^{\pi }\frac{3}{4}\cos \left ( x\right ) e^{-ix}dx=\frac{3}{8}\\ c_{-3} & =\frac{1}{2\pi }\int _{-\pi }^{\pi }\frac{1}{4}\cos \left ( 3x\right ) e^{-3ix}dx=\frac{1}{8}\\ c_{3} & =\frac{1}{2\pi }\int _{-\pi }^{\pi }\frac{1}{4}\cos \left ( 3x\right ) e^{-3ix}dx=\frac{1}{8} \end{align*}

Therefore, using result from part (a)\begin{align*} \hat{f}\left ( k\right ) & =\sqrt{2\pi }\sum _{n=-\infty }^{\infty }c_{n}\delta \left ( k-n\right ) \\ & =\sqrt{2\pi }\left ( \frac{1}{8}\delta \left ( k+3\right ) +\frac{3}{8}\delta \left ( k+1\right ) +\frac{3}{8}\delta \left ( k-1\right ) +\frac{1}{8}\delta \left ( k-3\right ) \right ) \\ & =\frac{1}{4}\sqrt{\frac{\pi }{2}}\left ( \delta \left ( k+3\right ) +3\delta \left ( k+1\right ) +3\delta \left ( k-1\right ) +\delta \left ( k-3\right ) \right ) \end{align*}

(iii) The \(2\pi \) periodic extension of \(f\left ( x\right ) =x\)

Since this is periodic, then \begin{align*} c_{n} & =\frac{1}{2\pi }\int _{-\pi }^{\pi }xe^{-inx}dx\\ & =\frac{2i}{n^{2}}\left ( n\pi \cos \left ( n\pi \right ) -\sin \left ( n\pi \right ) \right ) \\ & =\frac{2i}{n^{2}}\left ( n\pi \left ( -1\right ) ^{n}\right ) \\ & =\frac{2i}{n}\pi \left ( -1\right ) ^{n} \end{align*}

Therefore, using result from part (a)\begin{align*} \hat{f}\left ( k\right ) & =\sqrt{2\pi }\sum _{n=-\infty }^{\infty }c_{n}\delta \left ( k-n\right ) \\ & =\sqrt{2\pi }\sum _{n=-\infty }^{\infty }\frac{2i}{n}\pi \left ( -1\right ) ^{n}\delta \left ( k-n\right ) \\ & =2i\pi \sqrt{2\pi }\sum _{n=-\infty }^{\infty }\frac{\left ( -1\right ) ^{n}}{n}\delta \left ( k-n\right ) \qquad n\neq 0 \end{align*}

(iv) The sawtooth function

pict
Figure 2.78:Plot of \(f(x)\) (Fractional part of \(x\))

2.10.9 Problem 7.3.4

Find a solution to the differential equation \(-\frac{d^{2}u}{dx^{2}}+4u=\delta \left ( x\right ) \) by using the Fourier transform

Solution

Taking Fourier transform of both sides gives\begin{align*} -\left ( ik\right ) ^{2}\hat{u}\left ( k\right ) +4\hat{u}\left ( k\right ) & =\mathcal{F}\left [ \delta \left ( x\right ) \right ] \\ k^{2}\hat{u}\left ( k\right ) +4\hat{u}\left ( k\right ) & =\frac{1}{\sqrt{2\pi }} \end{align*}

Solving for \(\hat{u}\left ( k\right ) \)\begin{align*} \hat{u}\left ( k\right ) \left ( k^{2}+4\right ) & =\frac{1}{\sqrt{2\pi }}\\ \hat{u}\left ( k\right ) & =\frac{1}{\sqrt{2\pi }}\frac{1}{k^{2}+4} \end{align*}

Finding inverse Fourier transform.  From tables we see that \(\mathcal{F}\left ( e^{-a\left \vert x\right \vert }\right ) =\sqrt{\frac{2}{\pi }}\frac{a}{k^{2}+a^{2}}\). Using \(a=2\,\)\begin{align*} \mathcal{F}\left [ e^{-2\left \vert x\right \vert }\right ] & =\sqrt{\frac{2}{\pi }}\frac{2}{k^{2}+4}\\ \sqrt{\frac{\pi }{2}}\frac{1}{2}\mathcal{F}\left [ e^{-2\left \vert x\right \vert }\right ] & =\frac{1}{k^{2}+4}\\ \sqrt{\frac{\pi }{2}}\mathcal{F}\left [ \frac{1}{2}e^{-2\left \vert x\right \vert }\right ] & =\frac{1}{k^{2}+4}\\ \frac{1}{\sqrt{2\pi }}\sqrt{\frac{\pi }{2}}\mathcal{F}\left [ \frac{1}{2}e^{-2\left \vert x\right \vert }\right ] & =\frac{1}{\sqrt{2\pi }}\frac{1}{k^{2}+4}\\ \frac{1}{2}\mathcal{F}\left [ \frac{1}{2}e^{-2\left \vert x\right \vert }\right ] & =\frac{1}{\sqrt{2\pi }}\frac{1}{k^{2}+4}\\\mathcal{F}\left [ \frac{1}{4}e^{-2\left \vert x\right \vert }\right ] & =\frac{1}{\sqrt{2\pi }}\frac{1}{k^{2}+4} \end{align*}

Therefore \[ u\left ( x\right ) =\frac{1}{4}e^{-2\left \vert x\right \vert }\]

2.10.10 Key solution for HW 10

PDF