To plot mapping of complex function in maple, use [plots]conformal The
trick is to how to specify the quadrant in the x-y plane. This example shows
how.
Suppose we want to map the first quadrant. Then we specify the DIAGONAL points in the
range, from the lower left corner to the upper right corner, which then should
be 0..1+I Because 0 is the lower left corner, and \((1,i)\) is the upper right corner.
Example:
restart; assume(y,real); assume(x,real); #f:= z->I+z*exp(I*Pi/4); f:= z->z^2; w:=f(x+I*y); u:=Re(w); v:=Im(w); plots:-conformal(f(z),z=0..1+I,grid=[16,16],numxy=[16,16],scaling=constrained);
This below uses the first TWO quadrant’s, i.e. the upper half of the x-y plane
restart; assume(y,real); assume(x,real); #f:= z->I+z*exp(I*Pi/4); f:= z->z^2; w:=f(x+I*y); u:=Re(w); v:=Im(w); plots:-conformal(f(z),z=-1-I..1+I,grid=[16,16],numxy=[16,16],scaling=constrained);
This below puts the plots next to each others so to see them
restart; assume(y,real); assume(x,real); f:= z->I+z*exp(I*Pi/4); #f:= z->z^2; w:=f(x+I*y); u:=Re(w); v:=Im(w); A := array(1..2): A[1]:=plots:-conformal(z,z=0..1+I/2,grid=[16,16],numxy=[16,16],scaling=constrained): A[2]:=plots:-conformal(f(z),z=0..1+I/2,grid=[16,16],numxy=[16,16],scaling=constrained): plots:-display(A);