5.45 Dr Basti Associated Legendre
Subject: Associated Legendre
Author: Mehran Basti <Basti@worldnet.att.net>
Organization: AT&T Worldnet
Date: Mon, 25 Nov 2002 02:48:15 GMT
Dear newsgroup:
I had mentioned that my methods will solve classical equations without
the use of infinite series.
The following is a Maple code of my old files. Those days I had Maple2 but the
general idea is the same in the process and you see that we can also
solve the integrals involved.
It does not make sense how are the theory behind it but eventually it will come into light.
Just read the procedures and you can see the solution of associated Legendre AL at the end.
> s1:=-diff(p(t),t)+p(t)^2;
>
> s2:=exp(2*int(p(t),t))*T(t);
> s3:=s1+s2;
> s4:=diff(T(t),t)/T(t);
> s5:=-(1/2)*(diff(s4,t))+(1/4)*s4^2;
> s6:=s5+s2;
> p(t):=-1/t+(1)/(2-t);
> s1:=simplify(s1);
> s1:=collect(%,t);
> s2:=simplify(s2);
> s1+s2=(2*t^2-4*t+m^2-1)/(t*(-2+t))^2;
> solve(%,T(t));
> T(t):=simplify(%);
> s2:=simplify(s2);
> s2+s1;
> s3:=simplify(%);
>
> s6:=simplify(s6);
> t*(-2+t);
> simplify(%);
> z:=(r3*t^3+r2*t^2+r1*t+r0)/(%);
>
> simplify(diff(z,t)+z^2-s6);
> s7:=collect(numer(%),t);
>
> coeff(%,t,0);
> solve(%,r0);
> r0:=op(1,{%});
> coeff(s7,t,1);
> solve(%,r1);
> r1:=simplify(%);
> coeff(s7,t,2);
> solve(%,r2);
> r2:=simplify(%);
> coeff(s7,t,3);
> solve(%,r3);
> r3:=simplify(%);
> simplify(s7);
> s3:=simplify(s3);
> s4:=simplify(s4);
> s6:=simplify(s6);
> T(t):=simplify(T(t));
> z:=simplify(z);
> 1/2*s4+2*p(t)+z;
> s8:=simplify(%);
> exp(int(%,t));
> expand(%);
> g:=(%);
> simplify(g,power);
> g:=%;
> Int(%,t);
> Integralg:=(%);
> int(g1(t),t);
> x1:=-p(t)+g1(t)/(%);
> diff(x1,t)+x1^2-s3;
> simplify(%);
> s10:=numer(%);
> solve(%,int(g1(t),t));
> Ing:=(%);
> simplify(subs(g1(t)=g,%));
>
> Ing:=(%);
> expand(%);
> Ing:=simplify(%);
> simplify(diff(%,t)-g);
> expand(%);
> simplify(%);
> x:=-p(t)+g/Ing;
> simplify(diff(x,t)+x^2-s3);
> int(x,t);
> exp(%);
> expand(%);
> s11:=simplify(%);
> ALT:=t*(2-t)*diff(u(t),t$2)+2*(1-t)*diff(u(t),t)+(2-m^2/(1-(1-t)^2))*u(t);
> -2*(1-t)/(2*t*(2-t));
> int(%,t);
> exp(%);
> s12:=simplify(%,power);
>
> u1:=s12*s11;
> u1:=simplify(%,power);
> simplify(subs(u(t)=u1,ALT));
> AL:=(1-nu^2)*diff(u(nu),nu$2)-2*nu*diff(u(nu),nu)+(2-m^2/(1-nu^2))*u(nu);
>
> u2:=subs(t=1-nu,u1);
> simplify(subs(u(nu)=u2,AL));
>
The advantage of these methods are that there are ample rooms for advances.
Today my skills for solving classical equations such as Riccati is much advanced.
Highly complicated and more general Riccati equations in its billions now possible.
Sincerely
Dr.M.Basti