Internal
problem
ID
[7442]
Book
:
Ordinary
differential
equations
and
calculus
of
variations.
Makarets
and
Reshetnyak.
Wold
Scientific.
Singapore.
1995
Section
:
Chapter
1.
First
order
differential
equations.
Section
1.2
Homogeneous
equations
problems.
page
12
Problem
number
:
26
Date
solved
:
Sunday, March 30, 2025 at 12:06:45 PM
CAS
classification
:
[[_homogeneous, `class A`], _rational, _dAlembert]
ode:=-y(x)+x*diff(y(x),x) = (x^2+y(x)^2)^(1/2); dsolve(ode,y(x), singsol=all);
ode=x*D[y[x],x]-y[x]==Sqrt[x^2+y[x]^2]; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(x*Derivative(y(x), x) - sqrt(x**2 + y(x)**2) - y(x),0) ics = {} dsolve(ode,func=y(x),ics=ics)