Internal
problem
ID
[7441]
Book
:
Ordinary
differential
equations
and
calculus
of
variations.
Makarets
and
Reshetnyak.
Wold
Scientific.
Singapore.
1995
Section
:
Chapter
1.
First
order
differential
equations.
Section
1.2
Homogeneous
equations
problems.
page
12
Problem
number
:
25
Date
solved
:
Sunday, March 30, 2025 at 12:06:43 PM
CAS
classification
:
[_separable]
ode:=x^2*diff(y(x),x)^2-3*x*y(x)*diff(y(x),x)+2*y(x)^2 = 0; dsolve(ode,y(x), singsol=all);
ode=x^2*(D[y[x],x])^2-3*x*y[x]*D[y[x],x]+2*y[x]^2==0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(x**2*Derivative(y(x), x)**2 - 3*x*y(x)*Derivative(y(x), x) + 2*y(x)**2,0) ics = {} dsolve(ode,func=y(x),ics=ics)