4.3.25 Problems 2401 to 2500

Table 4.413: Second order ode

#

ODE

Mathematica

Maple

Sympy

8167

\[ {} R^{\prime \prime } = -\frac {k}{R^{2}} \]

8168

\[ {} x^{\prime \prime }-\left (1-\frac {{x^{\prime }}^{2}}{3}\right ) x^{\prime }+x = 0 \]

8174

\[ {} y^{\prime \prime }-6 y^{\prime }+13 y = 0 \]

8175

\[ {} y^{\prime \prime }+y = \tan \left (x \right ) \]

8184

\[ {} y^{\prime \prime }-4 y^{\prime }+4 y = 0 \]

8194

\[ {} y^{\prime \prime }-5 y^{\prime }+6 y = 0 \]

8195

\[ {} 2 y^{\prime \prime }+7 y^{\prime }-4 y = 0 \]

8196

\[ {} 2 y^{\prime }+x y^{\prime \prime } = 0 \]

8197

\[ {} 4 x^{2} y^{\prime \prime }+y = 0 \]

8198

\[ {} x^{2} y^{\prime \prime }-7 x y^{\prime }+15 y = 0 \]

8203

\[ {} y^{\prime \prime }+4 y^{\prime }+6 y = 10 \]

8211

\[ {} y^{\prime \prime }+2 y^{\prime }+4 y = 5 \sin \left (t \right ) \]

8213

\[ {} y^{\prime \prime } = f \left (x \right ) \]

8225

\[ {} x^{\prime \prime }+x = 0 \]

8226

\[ {} x^{\prime \prime }+x = 0 \]

8227

\[ {} x^{\prime \prime }+x = 0 \]

8228

\[ {} x^{\prime \prime }+x = 0 \]

8229

\[ {} y^{\prime \prime }-y = 0 \]

8230

\[ {} y^{\prime \prime }-y = 0 \]

8231

\[ {} y^{\prime \prime }-y = 0 \]

8232

\[ {} y^{\prime \prime }-y = 0 \]

8257

\[ {} y^{\prime \prime }+4 y = 0 \]

8258

\[ {} y^{\prime \prime }+4 y = 0 \]

8259

\[ {} y^{\prime \prime }+4 y = 0 \]

8260

\[ {} y^{\prime \prime }+4 y = 0 \]

8261

\[ {} y^{\prime \prime }+4 y = 0 \]

8262

\[ {} y^{\prime \prime }+4 y = 0 \]

8265

\[ {} 2 y^{\prime \prime }-3 y^{2} = 0 \]

8272

\[ {} y^{\prime \prime }+9 y = 18 \]

8273

\[ {} x y^{\prime \prime }-y^{\prime } = 0 \]

8274

\[ {} y^{\prime \prime } = y^{\prime } \]

8282

\[ {} y^{\prime \prime }+y = 2 \cos \left (x \right )-2 \sin \left (x \right ) \]

8283

\[ {} y^{\prime \prime }+y = \sec \left (x \right ) \]

8284

\[ {} x^{2} y^{\prime \prime }+x y^{\prime }+y = 0 \]

8285

\[ {} x^{2} y^{\prime \prime }+x y^{\prime }+y = \sec \left (\ln \left (x \right )\right ) \]

8288

\[ {} x^{2} y^{\prime \prime }+\left (x^{2}-x \right ) y^{\prime }+\left (1-x \right ) y = 0 \]

8289

\[ {} y^{\prime \prime }+y = {\mathrm e}^{x^{2}} \]

8292

\[ {} y^{\prime \prime } = 2 {y^{\prime }}^{3} y \]

8294

\[ {} y^{\prime \prime }+9 y = 5 \]

8296

\[ {} y^{\prime \prime }-2 y^{\prime }-3 y = 6 x +4 \]

8297

\[ {} y^{\prime \prime }-2 y^{\prime }-3 y = 6 x +4 \]

8298

\[ {} y^{\prime \prime }-2 y^{\prime }-3 y = 6 x +4 \]

8299

\[ {} y^{\prime \prime }-2 y^{\prime }-3 y = 6 x +4 \]

8635

\[ {} y^{\prime \prime }-y^{\prime }-6 y = 0 \]

8636

\[ {} y^{\prime \prime }+9 y = 10 \,{\mathrm e}^{-t} \]

8637

\[ {} y^{\prime \prime }-\frac {y}{4} = 0 \]

8638

\[ {} y^{\prime \prime }-6 y^{\prime }+5 y = 29 \cos \left (2 t \right ) \]

8639

\[ {} y^{\prime \prime }+7 y^{\prime }+12 y = 21 \,{\mathrm e}^{3 t} \]

8640

\[ {} y^{\prime \prime }-4 y^{\prime }+4 y = 0 \]

8641

\[ {} y^{\prime \prime }-4 y^{\prime }+3 y = 6 t -8 \]

8642

\[ {} y^{\prime \prime }+\frac {y}{25} = \frac {t^{2}}{50} \]

8643

\[ {} y^{\prime \prime }+3 y^{\prime }+\frac {9 y}{4} = 9 t^{3}+64 \]

8644

\[ {} y^{\prime \prime }-2 y^{\prime }-3 y = 0 \]

8646

\[ {} y^{\prime \prime }+2 y^{\prime }+5 y = 50 t -100 \]

8647

\[ {} y^{\prime \prime }+3 y^{\prime }-4 y = 6 \,{\mathrm e}^{2 t -3} \]

8648

\[ {} 9 y^{\prime \prime }-6 y^{\prime }+y = 0 \]

8649

\[ {} y^{\prime \prime }+6 y^{\prime }+8 y = {\mathrm e}^{-3 t}-{\mathrm e}^{-5 t} \]

8650

\[ {} y^{\prime \prime }+10 y^{\prime }+24 y = 144 t^{2} \]

8651

\[ {} y^{\prime \prime }+9 y = \left \{\begin {array}{cc} 8 \sin \left (t \right ) & 0<t <\pi \\ 0 & \pi <t \end {array}\right . \]

8652

\[ {} y^{\prime \prime }+3 y^{\prime }+2 y = \left \{\begin {array}{cc} 4 t & 0<t <1 \\ 8 & 1<t \end {array}\right . \]

8653

\[ {} y^{\prime \prime }+y^{\prime }-2 y = \left \{\begin {array}{cc} 3 \sin \left (t \right )-\cos \left (t \right ) & 0<t <2 \pi \\ 3 \sin \left (2 t \right )-\cos \left (2 t \right ) & 2 \pi <t \end {array}\right . \]

8654

\[ {} y^{\prime \prime }+3 y^{\prime }+2 y = \left \{\begin {array}{cc} 1 & 0<t <1 \\ 0 & 1<t \end {array}\right . \]

8655

\[ {} y^{\prime \prime }+y = \left \{\begin {array}{cc} t & 0<t <1 \\ 0 & 1<t \end {array}\right . \]

8656

\[ {} y^{\prime \prime }+2 y^{\prime }+5 y = \left \{\begin {array}{cc} 10 \sin \left (t \right ) & 0<t <2 \pi \\ 0 & 2 \pi <t \end {array}\right . \]

8657

\[ {} y^{\prime \prime }+4 y = \left \{\begin {array}{cc} 8 t^{2} & 0<t <5 \\ 0 & 5<t \end {array}\right . \]

8658

\[ {} y^{\prime \prime }+4 y = \delta \left (t -\pi \right ) \]

8659

\[ {} y^{\prime \prime }+16 y = 4 \delta \left (t -3 \pi \right ) \]

8660

\[ {} y^{\prime \prime }+y = \delta \left (t -\pi \right )-\delta \left (t -2 \pi \right ) \]

8661

\[ {} y^{\prime \prime }+4 y^{\prime }+5 y = \delta \left (t -1\right ) \]

8662

\[ {} 4 y^{\prime \prime }+24 y^{\prime }+37 y = 17 \,{\mathrm e}^{-t}+\delta \left (t -\frac {1}{2}\right ) \]

8663

\[ {} y^{\prime \prime }+3 y^{\prime }+2 y = 10 \sin \left (t \right )+10 \delta \left (t -1\right ) \]

8664

\[ {} y^{\prime \prime }+4 y^{\prime }+5 y = \left (1-\operatorname {Heaviside}\left (t -10\right )\right ) {\mathrm e}^{t}-{\mathrm e}^{10} \delta \left (t -10\right ) \]

8665

\[ {} y^{\prime \prime }+5 y^{\prime }+6 y = \delta \left (t -\frac {\pi }{2}\right )+\operatorname {Heaviside}\left (t -\pi \right ) \cos \left (t \right ) \]

8666

\[ {} y^{\prime \prime }+5 y^{\prime }+6 y = \operatorname {Heaviside}\left (t -1\right )+\delta \left (t -2\right ) \]

8667

\[ {} y^{\prime \prime }+2 y^{\prime }+5 y = 25 t -100 \delta \left (t -\pi \right ) \]

8764

\[ {} y^{\prime \prime }+2 y^{\prime }-y = 0 \]

8765

\[ {} y^{\prime \prime }+\frac {y^{\prime }}{x}-\frac {y}{x^{2}} = 0 \]

8766

\[ {} \left (x^{2}+1\right ) y^{\prime \prime }+x y^{\prime }+y = 0 \]

8767

\[ {} y^{\prime \prime }-\cot \left (x \right ) y^{\prime }+y \cos \left (x \right ) = 0 \]

8768

\[ {} y^{\prime \prime }+\frac {y^{\prime }}{x}+x^{2} y = 0 \]

8769

\[ {} x^{2} \left (-x^{2}+1\right ) y^{\prime \prime }+2 x \left (-x^{2}+1\right ) y^{\prime }-2 y = 0 \]

8770

\[ {} y-x y^{\prime }+\left (-x^{2}+1\right ) y^{\prime \prime } = 0 \]

8772

\[ {} y^{\prime \prime }+x \left (1-x \right ) y^{\prime }+y \,{\mathrm e}^{x} = 0 \]

8773

\[ {} x^{2} y^{\prime \prime }+2 x y^{\prime }+4 y = 0 \]

8775

\[ {} \left (x^{2}+1\right ) y^{\prime \prime }+x y^{\prime }+y = 0 \]

8776

\[ {} y+x y^{\prime }+y^{\prime \prime } = 2 x \,{\mathrm e}^{x}-1 \]

8777

\[ {} x y^{\prime \prime }+x y^{\prime }-y = x^{2}+2 x \]

8778

\[ {} x^{2} y^{\prime \prime }+x y^{\prime }-y = x^{2}+2 x \]

8779

\[ {} -y+x y^{\prime }+x^{3} y^{\prime \prime } = \cos \left (\frac {1}{x}\right ) \]

8780

\[ {} x \left (1+x \right ) y^{\prime \prime }+\left (x +2\right ) y^{\prime }-y = x +\frac {1}{x} \]

8781

\[ {} 2 x y^{\prime \prime }+\left (x -2\right ) y^{\prime }-y = x^{2}-1 \]

8782

\[ {} x^{2} \left (1+x \right ) y^{\prime \prime }+x \left (4 x +3\right ) y^{\prime }-y = x +\frac {1}{x} \]

8783

\[ {} x^{2} \left (\ln \left (x \right )-1\right ) y^{\prime \prime }-x y^{\prime }+y = x \left (1-\ln \left (x \right )\right )^{2} \]

8784

\[ {} x y^{\prime \prime }+2 y^{\prime }+x y = \sec \left (x \right ) \]

8785

\[ {} \left (-x^{2}+1\right ) y^{\prime \prime }-x y^{\prime }+\frac {y}{4} = -\frac {x^{2}}{2}+\frac {1}{2} \]

8786

\[ {} \left (\cos \left (x \right )+\sin \left (x \right )\right ) y^{\prime \prime }-2 \cos \left (x \right ) y^{\prime }+\left (\cos \left (x \right )-\sin \left (x \right )\right ) y = \left (\cos \left (x \right )+\sin \left (x \right )\right )^{2} {\mathrm e}^{2 x} \]

8787

\[ {} \left (\cos \left (x \right )-\sin \left (x \right )\right ) y^{\prime \prime }-2 y^{\prime } \sin \left (x \right )+y \left (\cos \left (x \right )+\sin \left (x \right )\right ) = \left (\cos \left (x \right )-\sin \left (x \right )\right )^{2} \]

8803

\[ {} y^{\prime \prime }-2 y^{\prime }-3 y = 0 \]

8804

\[ {} s^{\prime \prime }+2 s^{\prime }+s = 0 \]

8805

\[ {} y^{\prime \prime }-2 y^{\prime }+5 y = 0 \]