Internal
problem
ID
[8650]
Book
:
ADVANCED
ENGINEERING
MATHEMATICS.
ERWIN
KREYSZIG,
HERBERT
KREYSZIG,
EDWARD
J.
NORMINTON.
10th
edition.
John
Wiley
USA.
2011
Section
:
Chapter
6.
Laplace
Transforms.
Problem
set
6.3,
page
224
Problem
number
:
20
Date
solved
:
Tuesday, September 30, 2025 at 05:40:11 PM
CAS
classification
:
[[_2nd_order, _with_linear_symmetries]]
Using Laplace method With initial conditions
ode:=diff(diff(y(t),t),t)+10*diff(y(t),t)+24*y(t) = 144*t^2; ic:=[y(0) = 19/12, D(y)(0) = -5]; dsolve([ode,op(ic)],y(t),method='laplace');
ode=D[y[t],{t,2}]+10*D[y[t],t]+24*y[t]==144*t^2; ic={y[0]==19/12,Derivative[1][y][0] ==-5}; DSolve[{ode,ic},y[t],t,IncludeSingularSolutions->True]
from sympy import * t = symbols("t") y = Function("y") ode = Eq(-144*t**2 + 24*y(t) + 10*Derivative(y(t), t) + Derivative(y(t), (t, 2)),0) ics = {y(0): 19/12, Subs(Derivative(y(t), t), t, 0): -5} dsolve(ode,func=y(t),ics=ics)