87.25.18 problem 18

Internal problem ID [23821]
Book : Ordinary differential equations with modern applications. Ladas, G. E. and Finizio, N. Wadsworth Publishing. California. 1978. ISBN 0-534-00552-7. QA372.F56
Section : Chapter 5. Series solutions of second order linear equations. Exercise at page 232
Problem number : 18
Date solved : Thursday, October 02, 2025 at 09:45:31 PM
CAS classification : [[_2nd_order, _exact, _linear, _homogeneous]]

\begin{align*} y-x y^{\prime }+\left (-x^{2}+1\right ) y^{\prime \prime }&=0 \end{align*}

Using series method with expansion around

\begin{align*} 0 \end{align*}

With initial conditions

\begin{align*} y \left (0\right )&=1 \\ y^{\prime }\left (0\right )&=0 \\ \end{align*}
Maple. Time used: 0.001 (sec). Leaf size: 14
Order:=6; 
ode:=(-x^2+1)*diff(diff(y(x),x),x)-x*diff(y(x),x)+y(x) = 0; 
ic:=[y(0) = 1, D(y)(0) = 0]; 
dsolve([ode,op(ic)],y(x),type='series',x=0);
 
\[ y = 1-\frac {1}{2} x^{2}-\frac {1}{8} x^{4}+\operatorname {O}\left (x^{6}\right ) \]
Mathematica. Time used: 0.001 (sec). Leaf size: 19
ode=(1-x^2)*D[y[x],{x,2}]-x*D[y[x],x]+y[x]==0; 
ic={y[0]==1,Derivative[1][y][0] ==0}; 
AsymptoticDSolveValue[{ode,ic},y[x],{x,0,5}]
 
\[ y(x)\to -\frac {x^4}{8}-\frac {x^2}{2}+1 \]
Sympy. Time used: 0.231 (sec). Leaf size: 22
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(-x*Derivative(y(x), x) + (1 - x**2)*Derivative(y(x), (x, 2)) + y(x),0) 
ics = {y(0): 1, Subs(Derivative(y(x), x), x, 0): 0} 
dsolve(ode,func=y(x),ics=ics,hint="2nd_power_series_ordinary",x0=0,n=6)
 
\[ y{\left (x \right )} = C_{2} \left (- \frac {x^{4}}{8} - \frac {x^{2}}{2} + 1\right ) + C_{1} x + O\left (x^{6}\right ) \]