Internal
problem
ID
[23820]
Book
:
Ordinary
differential
equations
with
modern
applications.
Ladas,
G.
E.
and
Finizio,
N.
Wadsworth
Publishing.
California.
1978.
ISBN
0-534-00552-7.
QA372.F56
Section
:
Chapter
5.
Series
solutions
of
second
order
linear
equations.
Exercise
at
page
232
Problem
number
:
17
Date
solved
:
Thursday, October 02, 2025 at 09:45:30 PM
CAS
classification
:
[_Gegenbauer]
Using series method with expansion around
With initial conditions
Order:=6; ode:=(-x^2+1)*diff(diff(y(x),x),x)-2*x*diff(y(x),x)+6*y(x) = 0; ic:=[y(0) = 0, D(y)(0) = 1]; dsolve([ode,op(ic)],y(x),type='series',x=0);
ode=(1-x^2)*D[y[x],{x,2}]-2*x*D[y[x],x]+6*y[x]==0; ic={y[0]==0,Derivative[1][y][0] ==1}; AsymptoticDSolveValue[{ode,ic},y[x],{x,0,5}]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(-2*x*Derivative(y(x), x) + (1 - x**2)*Derivative(y(x), (x, 2)) + 6*y(x),0) ics = {y(0): 0, Subs(Derivative(y(x), x), x, 0): 1} dsolve(ode,func=y(x),ics=ics,hint="2nd_power_series_ordinary",x0=0,n=6)