87.25.11 problem 11

Internal problem ID [23814]
Book : Ordinary differential equations with modern applications. Ladas, G. E. and Finizio, N. Wadsworth Publishing. California. 1978. ISBN 0-534-00552-7. QA372.F56
Section : Chapter 5. Series solutions of second order linear equations. Exercise at page 232
Problem number : 11
Date solved : Thursday, October 02, 2025 at 09:45:27 PM
CAS classification : [[_Emden, _Fowler]]

\begin{align*} y^{\prime \prime }-y x&=0 \end{align*}

Using series method with expansion around

\begin{align*} 0 \end{align*}

With initial conditions

\begin{align*} y \left (0\right )&=0 \\ y^{\prime }\left (0\right )&=1 \\ \end{align*}
Maple. Time used: 0.001 (sec). Leaf size: 12
Order:=6; 
ode:=diff(diff(y(x),x),x)-x*y(x) = 0; 
ic:=[y(0) = 0, D(y)(0) = 1]; 
dsolve([ode,op(ic)],y(x),type='series',x=0);
 
\[ y = x +\frac {1}{12} x^{4}+\operatorname {O}\left (x^{6}\right ) \]
Mathematica. Time used: 0.001 (sec). Leaf size: 12
ode=D[y[x],{x,2}]-x*y[x]==0; 
ic={y[0]==0,Derivative[1][y][0] ==1}; 
AsymptoticDSolveValue[{ode,ic},y[x],{x,0,5}]
 
\[ y(x)\to \frac {x^4}{12}+x \]
Sympy. Time used: 0.179 (sec). Leaf size: 24
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(-x*y(x) + Derivative(y(x), (x, 2)),0) 
ics = {y(0): 0, Subs(Derivative(y(x), x), x, 0): 1} 
dsolve(ode,func=y(x),ics=ics,hint="2nd_power_series_ordinary",x0=0,n=6)
 
\[ y{\left (x \right )} = C_{2} \left (\frac {x^{3}}{6} + 1\right ) + C_{1} x \left (\frac {x^{3}}{12} + 1\right ) + O\left (x^{6}\right ) \]