Internal
problem
ID
[23813]
Book
:
Ordinary
differential
equations
with
modern
applications.
Ladas,
G.
E.
and
Finizio,
N.
Wadsworth
Publishing.
California.
1978.
ISBN
0-534-00552-7.
QA372.F56
Section
:
Chapter
5.
Series
solutions
of
second
order
linear
equations.
Exercise
at
page
232
Problem
number
:
10
Date
solved
:
Thursday, October 02, 2025 at 09:45:26 PM
CAS
classification
:
[[_2nd_order, _with_linear_symmetries]]
Using series method with expansion around
With initial conditions
Order:=6; ode:=(x^2+4*x+3)*diff(diff(y(x),x),x)+2*(x+2)*diff(y(x),x)-2*y(x) = 0; ic:=[y(-2) = 0, D(y)(-2) = -1]; dsolve([ode,op(ic)],y(x),type='series',x=-2);
ode=(x^2+4*x+3)*D[y[x],{x,2}]+2*(x+2)*D[y[x],x]-2*y[x]==0; ic={y[-2]==0,Derivative[1][y][-2] ==-1}; AsymptoticDSolveValue[{ode,ic},y[x],{x,-2,5}]
from sympy import * x = symbols("x") y = Function("y") ode = Eq((2*x + 4)*Derivative(y(x), x) + (x**2 + 4*x + 3)*Derivative(y(x), (x, 2)) - 2*y(x),0) ics = {y(-2): 0, Subs(Derivative(y(x), x), x, -2): -1} dsolve(ode,func=y(x),ics=ics,hint="2nd_power_series_ordinary",x0=-2,n=6)