87.25.10 problem 10

Internal problem ID [23813]
Book : Ordinary differential equations with modern applications. Ladas, G. E. and Finizio, N. Wadsworth Publishing. California. 1978. ISBN 0-534-00552-7. QA372.F56
Section : Chapter 5. Series solutions of second order linear equations. Exercise at page 232
Problem number : 10
Date solved : Thursday, October 02, 2025 at 09:45:26 PM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

\begin{align*} \left (x^{2}+4 x +3\right ) y^{\prime \prime }+2 \left (x +2\right ) y^{\prime }-2 y&=0 \end{align*}

Using series method with expansion around

\begin{align*} -2 \end{align*}

With initial conditions

\begin{align*} y \left (-2\right )&=0 \\ y^{\prime }\left (-2\right )&=-1 \\ \end{align*}
Maple. Time used: 0.001 (sec). Leaf size: 9
Order:=6; 
ode:=(x^2+4*x+3)*diff(diff(y(x),x),x)+2*(x+2)*diff(y(x),x)-2*y(x) = 0; 
ic:=[y(-2) = 0, D(y)(-2) = -1]; 
dsolve([ode,op(ic)],y(x),type='series',x=-2);
 
\[ y = -x -2 \]
Mathematica. Time used: 0.001 (sec). Leaf size: 8
ode=(x^2+4*x+3)*D[y[x],{x,2}]+2*(x+2)*D[y[x],x]-2*y[x]==0; 
ic={y[-2]==0,Derivative[1][y][-2] ==-1}; 
AsymptoticDSolveValue[{ode,ic},y[x],{x,-2,5}]
 
\[ y(x)\to -x-2 \]
Sympy. Time used: 0.288 (sec). Leaf size: 26
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq((2*x + 4)*Derivative(y(x), x) + (x**2 + 4*x + 3)*Derivative(y(x), (x, 2)) - 2*y(x),0) 
ics = {y(-2): 0, Subs(Derivative(y(x), x), x, -2): -1} 
dsolve(ode,func=y(x),ics=ics,hint="2nd_power_series_ordinary",x0=-2,n=6)
 
\[ y{\left (x \right )} = C_{2} \left (- \frac {\left (x + 2\right )^{4}}{3} - \left (x + 2\right )^{2} + 1\right ) + C_{1} \left (x + 2\right ) + O\left (x^{6}\right ) \]