| # | ODE | Mathematica | Maple | Sympy |
| \[
{} x^{3} y^{\prime \prime \prime }-3 x^{2} y^{\prime \prime }+6 x y^{\prime }-6 y = 2 x
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 4 x^{3} y^{\prime \prime \prime }+4 x^{2} y^{\prime \prime }-5 x y^{\prime }+2 y = 30 x^{2}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{3} y^{\prime \prime \prime }+x^{2} y^{\prime \prime }-2 x y^{\prime }+2 y = x^{2}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 16 x^{4} y^{\prime \prime \prime \prime }+96 x^{3} y^{\prime \prime \prime }+72 x^{2} y^{\prime \prime }-24 x y^{\prime }+9 y = 96 x^{{5}/{2}}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{4} y^{\prime \prime \prime \prime }-4 x^{3} y^{\prime \prime \prime }+12 x^{2} y^{\prime \prime }-24 x y^{\prime }+24 y = x^{4}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{4} y^{\prime \prime \prime \prime }+6 x^{3} y^{\prime \prime \prime }+2 x^{2} y^{\prime \prime }-4 x y^{\prime }+4 y = 12 x^{2}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{3} y^{\prime \prime \prime }-2 x^{2} y^{\prime \prime }+3 x y^{\prime }-3 y = 4 x
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{3} y^{\prime \prime \prime }-5 x^{2} y^{\prime \prime }+14 x y^{\prime }-18 y = x^{3}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{3} y^{\prime \prime \prime }-6 x^{2} y^{\prime \prime }+16 x y^{\prime }-16 y = 9 x^{4}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{3} y^{\prime \prime \prime }+x^{2} y^{\prime \prime }-2 x y^{\prime }+2 y = x \left (1+x \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{4} y^{\prime \prime \prime \prime }+3 x^{3} y^{\prime \prime \prime }-x^{2} y^{\prime \prime }+2 x y^{\prime }-2 y = 9 x^{2}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 4 x^{4} y^{\prime \prime \prime \prime }+24 x^{3} y^{\prime \prime \prime }+23 x^{2} y^{\prime \prime }-x y^{\prime }+y = 6 x
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{4} y^{\prime \prime \prime \prime }+5 x^{3} y^{\prime \prime \prime }-3 x^{2} y^{\prime \prime }-6 x y^{\prime }+6 y = 40 x^{3}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{3} y^{\prime \prime \prime }+x^{2} y^{\prime \prime }-2 x y^{\prime }+2 y = F \left (x \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{4} y^{\prime \prime \prime \prime }+6 x^{3} y^{\prime \prime \prime }+2 x^{2} y^{\prime \prime }-4 x y^{\prime }+4 y = F \left (x \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{3} y^{\prime \prime \prime }+2 x^{2} y^{\prime \prime }-x y^{\prime }+y = \frac {1}{x}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 4 x^{3} y^{\prime \prime \prime }+8 x^{2} y^{\prime \prime }-x y^{\prime }+y = x +\ln \left (x \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 3 x^{3} y^{\prime \prime \prime }+4 x^{2} y^{\prime \prime }-10 x y^{\prime }+10 y = \frac {4}{x^{2}}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{4} y^{\prime \prime \prime \prime }+7 x^{3} y^{\prime \prime \prime }+9 x^{2} y^{\prime \prime }-6 x y^{\prime }-6 y = \cos \left (\ln \left (x \right )\right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{3} y^{\prime \prime \prime }-2 x^{2} y^{\prime \prime }-x y^{\prime }+4 y = \sin \left (\ln \left (x \right )\right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x y^{\prime \prime \prime }+2 y^{\prime \prime } = A x
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{3} y^{\prime \prime \prime }+2 x^{2} y^{\prime \prime }-x y^{\prime }+y = 9 x^{2} \ln \left (x \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{3} y^{\prime \prime \prime }+3 x^{2} y^{\prime \prime }+x y^{\prime }-y = x^{2}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} -y^{\prime }+\left (2 \cot \left (x \right )+\csc \left (x \right )\right ) y^{\prime \prime }+y^{\prime \prime \prime } = \cot \left (x \right )
\]
|
✓ |
✓ |
✗ |
|
| \[
{} \sin \left (x \right ) y-2 \cos \left (x \right ) y^{\prime }-\sin \left (x \right ) y^{\prime \prime }+y^{\prime \prime \prime } = \ln \left (x \right )
\]
|
✓ |
✓ |
✗ |
|
| \[
{} x y^{\prime \prime \prime } = 2
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y-x y^{\prime }-y^{\prime \prime }+x y^{\prime \prime \prime } = -x^{2}+1
\]
|
✓ |
✓ |
✗ |
|
| \[
{} 2 x y^{\prime \prime }+x^{2} y^{\prime \prime \prime } = a
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 3 x y+y^{\prime } \left (x^{2}+2\right )+4 x y^{\prime \prime }+x^{2} y^{\prime \prime \prime } = f \left (x \right )
\]
|
✓ |
✓ |
✗ |
|
| \[
{} 4 y^{\prime }+5 x y^{\prime \prime }+x^{2} y^{\prime \prime \prime } = \ln \left (x \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y+x y^{\prime }+\left (\operatorname {b1} x +\operatorname {a1} \right ) y^{\prime \prime }+x \left (\operatorname {b0} x +\operatorname {a0} \right ) y^{\prime \prime \prime } = f \left (x \right )
\]
|
✓ |
✓ |
✗ |
|
| \[
{} x^{3} y^{\prime \prime \prime } = a
\]
|
✓ |
✓ |
✓ |
|
| \[
{} -y+x y^{\prime }+x^{3} y^{\prime \prime \prime } = x \ln \left (x \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} -2 y+2 x y^{\prime }-x^{2} y^{\prime \prime }+x^{3} y^{\prime \prime \prime } = x \left (x^{2}+3\right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 3 x^{2} y^{\prime \prime }+x^{3} y^{\prime \prime \prime } = a
\]
|
✓ |
✓ |
✓ |
|
| \[
{} -y+2 x y^{\prime }+x^{2} \ln \left (x \right ) y^{\prime \prime }+x^{3} y^{\prime \prime \prime } = 2 x^{3}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} 2 x y+2 x^{3} y^{\prime \prime }+x^{4} y^{\prime \prime \prime } = 10 x^{2}+10
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x y-x^{2} y^{\prime }+2 x^{3} y^{\prime \prime }+x^{4} y^{\prime \prime \prime } = 1
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 10 x^{2} y^{\prime }+8 x^{3} y^{\prime \prime }+x^{2} \left (x^{2}+1\right ) y^{\prime \prime \prime } = -1+3 x^{2}+2 x^{2} \ln \left (x \right )
\]
|
✓ |
✓ |
✗ |
|
| \[
{} 4 x^{2} y^{\prime }-4 x^{3} y^{\prime \prime }+4 x^{4} y^{\prime \prime \prime } = 1
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \sin \left (x \right )-y \cos \left (x \right )-3 y^{\prime } \sin \left (x \right )+3 \left (\cos \left (x \right )+1\right ) y^{\prime \prime }+\left (x +\sin \left (x \right )\right ) y^{\prime \prime \prime } = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} \left (x +a \right )^{2} y^{\prime \prime \prime \prime } = 1
\]
|
✓ |
✓ |
✓ |
|
| \[
{} -y+x y^{\prime }+x^{3} y^{\prime \prime \prime } = 3 x^{4}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{3} y^{\prime \prime \prime }+2 x^{2} y^{\prime \prime } = x +\sin \left (\ln \left (x \right )\right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} -y+x y^{\prime }+x^{3} y^{\prime \prime \prime } = 3 x^{4}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \left (2 x -3\right ) y^{\prime \prime \prime }-\left (6 x -7\right ) y^{\prime \prime }+4 x y^{\prime }-4 y = 8
\]
|
✓ |
✓ |
✗ |
|
| \[
{} x^{3} y^{\prime \prime \prime }+2 x^{2} y^{\prime \prime }-x y^{\prime }+y = 12 x^{2}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime }-x^{3} y^{\prime }-x^{2} y-x^{3} = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} x^{4} y^{\prime \prime \prime }+x^{3} y^{\prime \prime }+x^{2} y^{\prime }+x y = x
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime }+a \,x^{3} y-b x = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime \prime \prime }-\sin \left (x \right ) y^{\prime \prime }-2 \cos \left (x \right ) y^{\prime }+\sin \left (x \right ) y-\ln \left (x \right ) = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} x y^{\prime \prime \prime }+\left (x^{2}-3\right ) y^{\prime \prime }+4 x y^{\prime }+2 y-f \left (x \right ) = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} 2 x y^{\prime \prime \prime }+3 y^{\prime \prime }+a x y-b = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} x^{2} y^{\prime \prime \prime }+4 x y^{\prime \prime }+y^{\prime } \left (x^{2}+2\right )+3 x y-f \left (x \right ) = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} x^{2} y^{\prime \prime \prime }+5 x y^{\prime \prime }+4 y^{\prime }-\ln \left (x \right ) = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \left (x^{2}+1\right ) y^{\prime \prime \prime }+8 x y^{\prime \prime }+10 y^{\prime }-3+\frac {1}{x^{2}}-2 \ln \left (x \right ) = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} x^{3} y^{\prime \prime \prime }+3 x^{2} y^{\prime \prime }-2 x y^{\prime }+2 y-6 x^{3} \left (x -1\right ) \ln \left (x \right )+x^{3} \left (x +8\right ) = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{3} y^{\prime \prime \prime }+x^{2} y^{\prime \prime }+\ln \left (x \right )+2 x y^{\prime }-y-2 x^{3} = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 4 x^{4} y^{\prime \prime \prime }-4 x^{3} y^{\prime \prime }+4 x^{2} y^{\prime }-1 = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime } \sin \left (x \right )+\left (1+2 \cos \left (x \right )\right ) y^{\prime \prime }-y^{\prime } \sin \left (x \right )-\cos \left (x \right ) = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} \sin \left (x \right )-y \cos \left (x \right )-3 y^{\prime } \sin \left (x \right )+3 \left (\cos \left (x \right )+1\right ) y^{\prime \prime }+\left (x +\sin \left (x \right )\right ) y^{\prime \prime \prime } = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime \prime \prime \prime } x +5 y^{\prime \prime \prime }-24 = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{2} y^{\prime \prime \prime \prime }+2 x y^{\prime \prime \prime }+a y-b \,x^{2} = 0
\]
|
✗ |
✓ |
✗ |
|
| \[
{} \left ({\mathrm e}^{x}+2 x \right ) y^{\prime \prime \prime \prime }+4 \left ({\mathrm e}^{x}+2\right ) y^{\prime \prime \prime }+6 \,{\mathrm e}^{x} y^{\prime \prime }+4 \,{\mathrm e}^{x} y^{\prime }+y \,{\mathrm e}^{x}-\frac {1}{x^{5}} = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime \prime \prime \prime } \sin \left (x \right )^{6}+4 y^{\prime \prime \prime } \sin \left (x \right )^{5} \cos \left (x \right )-6 y^{\prime \prime } \sin \left (x \right )^{6}-4 y^{\prime } \sin \left (x \right )^{5} \cos \left (x \right )+y \sin \left (x \right )^{6}-f = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\left (5\right )}-a x y-b = 0
\]
|
✗ |
✗ |
✗ |
|
| \[
{} x y^{\left (5\right )}-\left (a A_{1} -A_{0} \right ) x -A_{1} -\left (\left (a A_{2} -A_{1} \right ) x +A_{2} \right ) y^{\prime } = 0
\]
|
✗ |
✗ |
✗ |
|
| \[
{} -y+x y^{\prime }+x^{3} y^{\prime \prime \prime } = x \ln \left (x \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 2 y+2 x^{2} y^{\prime \prime }+x^{3} y^{\prime \prime \prime } = 10 x +\frac {10}{x}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y+3 x y^{\prime }+9 x^{2} y^{\prime \prime }+6 x^{3} y^{\prime \prime \prime }+x^{4} y^{\prime \prime \prime \prime } = \left (\ln \left (x \right )+1\right )^{2}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{3} y^{\prime \prime \prime }+2 x^{2} y^{\prime \prime }-x y^{\prime }+y = \frac {1}{x}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y-x y^{\prime }-y^{\prime \prime }+x y^{\prime \prime \prime } = -x^{2}+1
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime }+\left (x +2\right ) y^{\prime \prime }+\left (x +2\right )^{2} y^{\prime \prime \prime } = 1
\]
|
✓ |
✓ |
✗ |
|
| \[
{} -2 y+2 x y^{\prime }-x^{2} y^{\prime \prime }+x^{3} y^{\prime \prime \prime } = x^{3}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime }+x y = \sin \left (x \right )
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime \prime \prime }+x y = \cosh \left (x \right )
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime \prime \prime }+x y = \cosh \left (x \right )
\]
|
✓ |
✓ |
✗ |
|
| \[
{} x y^{\prime \prime \prime } = 2
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x y^{\prime \prime \prime }+x y^{\prime } = 4
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x y^{\prime \prime \prime }+2 y^{\prime \prime } = 6 x
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x y^{\prime \prime \prime }+2 y^{\prime \prime } = 6 x
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{3} y^{\prime \prime \prime }-3 x^{2} y^{\prime \prime }+6 x y^{\prime }-6 y = x^{3}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{3} y^{\prime \prime \prime }-3 x^{2} y^{\prime \prime }+6 x y^{\prime }-6 y = {\mathrm e}^{-x^{2}}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{4} y^{\prime \prime \prime \prime }+6 x^{3} y^{\prime \prime \prime }-3 x^{2} y^{\prime \prime }-9 x y^{\prime }+9 y = 12 x \sin \left (x^{2}\right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} t^{2} \ln \left (t \right ) y^{\prime \prime \prime }-t y^{\prime \prime }+y^{\prime } = 1
\]
|
✓ |
✓ |
✗ |
|
| \[
{} \left (t^{2}+t \right ) y^{\prime \prime \prime }+\left (-t^{2}+2\right ) y^{\prime \prime }-\left (t +2\right ) y^{\prime } = -2-t
\]
|
✓ |
✓ |
✗ |
|
| \[
{} 2 t^{3} y^{\prime \prime \prime }+t^{2} y^{\prime \prime }+t y^{\prime }-y = -3 t^{2}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} t y^{\prime \prime \prime \prime }+2 y^{\prime \prime \prime } = \frac {45}{8 t^{{7}/{2}}}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{3} y^{\prime \prime \prime }+3 x^{2} y^{\prime \prime }-11 x y^{\prime }+16 y = \frac {1}{x^{3}}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{3} y^{\prime \prime \prime }+16 x^{2} y^{\prime \prime }+70 x y^{\prime }+80 y = \frac {1}{x^{13}}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{3} y^{\prime \prime \prime }+3 x^{2} y^{\prime \prime }-3 x y^{\prime } = -8
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x y^{\prime \prime \prime } = 2
\]
|
✓ |
✓ |
✓ |
|
| \[
{} t y^{\prime \prime \prime }+\sin \left (t \right ) y^{\prime \prime }+8 y = \cos \left (t \right )
\]
|
✗ |
✗ |
✗ |
|
| \[
{} y^{\prime \prime \prime }+t y^{\prime \prime }+t^{2} y^{\prime }+t^{2} y = \ln \left (t \right )
\]
|
✗ |
✗ |
✗ |
|
| \[
{} t y^{\prime \prime \prime }+\sin \left (t \right ) y^{\prime \prime }+4 y = \cos \left (t \right )
\]
|
✗ |
✗ |
✗ |
|
| \[
{} y^{\prime \prime \prime }+t y^{\prime \prime }+5 t^{2} y^{\prime }+2 t^{3} y = \ln \left (t \right )
\]
|
✗ |
✗ |
✗ |
|
| \[
{} -2 x y+y^{\prime } \left (x^{2}+2\right )-2 x y^{\prime \prime }+\left (x^{2}+2\right ) y^{\prime \prime \prime } = x^{4}+12
\]
|
✓ |
✓ |
✗ |
|
| \[
{} -2 y+2 x y^{\prime }-x^{2} y^{\prime \prime }+x^{3} y^{\prime \prime \prime } = x^{3}+3 x
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{4} y^{\prime \prime \prime \prime }+x^{3} y^{\prime \prime \prime }-20 x^{2} y^{\prime \prime }+20 x y^{\prime } = 17 x^{6}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} t^{4} x^{\prime \prime \prime \prime }-2 t^{3} x^{\prime \prime \prime }-20 t^{2} x^{\prime \prime }+12 t x^{\prime }+16 x = \cos \left (3 \ln \left (t \right )\right )
\]
|
✓ |
✓ |
✓ |
|