Internal
problem
ID
[3236]
Book
:
Differential
Equations
by
Alfred
L.
Nelson,
Karl
W.
Folley,
Max
Coral.
3rd
ed.
DC
heath.
Boston.
1964
Section
:
Exercise
25,
page
112
Problem
number
:
16
Date
solved
:
Tuesday, September 30, 2025 at 06:30:05 AM
CAS
classification
:
[[_3rd_order, _linear, _nonhomogeneous]]
ode:=x^3*diff(diff(diff(y(x),x),x),x)-2*x^2*diff(diff(y(x),x),x)-x*diff(y(x),x)+4*y(x) = sin(ln(x)); dsolve(ode,y(x), singsol=all);
ode=x^3*D[y[x],{x,3}]-2*x^2*D[y[x],{x,2}]-x*D[y[x],x]+4*y[x]==Sin[Log[x]]; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(x**3*Derivative(y(x), (x, 3)) - 2*x**2*Derivative(y(x), (x, 2)) - x*Derivative(y(x), x) + 4*y(x) - sin(log(x)),0) ics = {} dsolve(ode,func=y(x),ics=ics)