| # | ODE | Mathematica | Maple | Sympy |
| \[
{} y^{\prime \prime }+4 y^{\prime }+13 y = \delta \left (t -\pi \right )+\delta \left (t -3 \pi \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }-7 y^{\prime }+6 y = {\mathrm e}^{t}+\delta \left (t -2\right )+\delta \left (t -4\right )
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime \prime }+2 y^{\prime }+10 y = \delta \left (t \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+y = -\cos \left (x \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }-6 y^{\prime }+9 y = {\mathrm e}^{x}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+3 y^{\prime }+2 y = 12 x^{2}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+3 y^{\prime }+2 y = x^{2}+2 x +1
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }-y^{\prime }-2 y = 5 \,{\mathrm e}^{2 x}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+16 y = 4 \cos \left (x \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }-4 y^{\prime }+3 y = 9 x^{2}+4
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+y = \tan \left (x \right )^{2}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+y^{\prime }+4 y = 1
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+y^{\prime }+4 y = \sin \left (x \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime } = 1
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime } = f \left (t \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime } = k
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime } = 4 \sin \left (x \right )-4
\]
|
✓ |
✓ |
✓ |
|
| \[
{} z^{\prime \prime }+3 z^{\prime }+2 z = 24 \,{\mathrm e}^{-3 t}-24 \,{\mathrm e}^{-4 t}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+y = \sin \left (x \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+y = \sin \left (x \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+y = \sin \left (x \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+y = \sin \left (x \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+y = \sin \left (x \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+y = \sin \left (x \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+y = \sin \left (x \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+y = \sin \left (x \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+y^{\prime }+y = \sin \left (x \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+y^{\prime }+y = \sin \left (x \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+y^{\prime }+y = \sin \left (x \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+20 y^{\prime }+500 y = 100000 \cos \left (100 x \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+2 y^{\prime }-24 y = 16-\left (x +2\right ) {\mathrm e}^{4 x}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+3 y^{\prime }-4 y = 6 \,{\mathrm e}^{2 t -2}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime } = 1
\]
|
✓ |
✓ |
✓ |
|
| \[
{} {y^{\prime \prime }}^{2} = 1
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime } = x
\]
|
✓ |
✓ |
✓ |
|
| \[
{} {y^{\prime \prime }}^{2} = x
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+y^{\prime } = 1
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+y^{\prime } = x
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+y^{\prime }+y = 1
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+y^{\prime }+y = x
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+y^{\prime }+y = 1+x
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+y^{\prime }+y = x^{2}+x +1
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+y^{\prime }+y = x^{3}+x^{2}+x +1
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+y^{\prime }+y = \sin \left (x \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+y^{\prime }+y = \cos \left (x \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+y^{\prime } = 1
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+y^{\prime } = x
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+y^{\prime } = 1+x
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+y^{\prime } = x^{2}+x +1
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+y^{\prime } = x^{3}+x^{2}+x +1
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+y^{\prime } = \sin \left (x \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+y^{\prime } = \cos \left (x \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+y = 1
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+y = x
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+y = 1+x
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+y = x^{2}+x +1
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+y = x^{3}+x^{2}+x +1
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+y = \sin \left (x \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+y = \cos \left (x \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+y-\sin \left (n x \right ) = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+y-a \cos \left (b x \right ) = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+y-\sin \left (a x \right ) \sin \left (b x \right ) = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime \prime }-2 y-4 x^{2} {\mathrm e}^{x^{2}} = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+a^{2} y-\cot \left (a x \right ) = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+a y^{\prime }+b y-f \left (x \right ) = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+a y^{\prime }+\tan \left (x \right )+b y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+3 y^{\prime }+2 y = {\mathrm e}^{{\mathrm e}^{x}}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }-2 y^{\prime }+y = \frac {{\mathrm e}^{x}}{\left (1-x \right )^{2}}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime \prime }-3 y^{\prime }+2 y = {\mathrm e}^{x}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+y = \sec \left (x \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+y = \sec \left (x \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+y = \tan \left (x \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+4 y = x^{2}+\cos \left (x \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }-2 y^{\prime }+y = 2 x \,{\mathrm e}^{2 x}-\sin \left (x \right )^{2}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+y = 2 \,{\mathrm e}^{x}+x^{3}-x
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y+2 y^{\prime }+y^{\prime \prime } = 3 \,{\mathrm e}^{2 x}-\cos \left (x \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }-2 y^{\prime } = {\mathrm e}^{2 x}+1
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 6 y-5 y^{\prime }+y^{\prime \prime } = \cos \left (x \right )-{\mathrm e}^{2 x}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y+2 y^{\prime }+y^{\prime \prime } = 2 x^{3}-x \,{\mathrm e}^{3 x}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+4 y = \sin \left (x \right )^{2}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+4 y = \sec \left (x \right )^{2}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+y = x \cos \left (x \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime } = x \,{\mathrm e}^{x}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{\prime \prime } = -3 \sqrt {t}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{\prime \prime }+x^{\prime } = 3 t
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{\prime \prime }+x^{\prime }+x = 3 t^{3}-1
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{\prime \prime }+x^{\prime }+x = 3 \cos \left (t \right )-2 \sin \left (t \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{\prime \prime }+x^{\prime }+x = 12
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{\prime \prime }+x^{\prime }+x = t^{2} {\mathrm e}^{3 t}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{\prime \prime }+x^{\prime }+x = 5 \sin \left (7 t \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{\prime \prime }+x^{\prime }+x = {\mathrm e}^{2 t} \cos \left (t \right )+t^{2}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{\prime \prime }+x^{\prime }+x = t \,{\mathrm e}^{-t} \sin \left (\pi t \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{\prime \prime }+x^{\prime }+x = \left (t +2\right ) \sin \left (\pi t \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{\prime \prime }+x^{\prime }+x = 4 t +5 \,{\mathrm e}^{-t}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{\prime \prime }+x^{\prime }+x = 5 \sin \left (2 t \right )+t \,{\mathrm e}^{t}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{\prime \prime }+x^{\prime }+x = t^{3}+1-4 \cos \left (t \right ) t
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{\prime \prime }+x^{\prime }+x = -6+2 \,{\mathrm e}^{2 t} \sin \left (t \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{\prime \prime }+7 x = t \,{\mathrm e}^{3 t}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{\prime \prime }-x^{\prime } = 6+{\mathrm e}^{2 t}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{\prime \prime }+x = t^{2}
\]
|
✓ |
✓ |
✓ |
|