44.10.5 problem 1(e)

Internal problem ID [9260]
Book : Differential Equations: Theory, Technique, and Practice by George Simmons, Steven Krantz. McGraw-Hill NY. 2007. 1st Edition.
Section : Chapter 2. Second-Order Linear Equations. Section 2.2. THE METHOD OF UNDETERMINED COEFFICIENTS. Page 67
Problem number : 1(e)
Date solved : Tuesday, September 30, 2025 at 06:15:46 PM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

\begin{align*} y^{\prime \prime }-y^{\prime }-6 y&=20 \,{\mathrm e}^{-2 x} \end{align*}
Maple. Time used: 0.004 (sec). Leaf size: 20
ode:=diff(diff(y(x),x),x)-diff(y(x),x)-6*y(x) = 20*exp(-2*x); 
dsolve(ode,y(x), singsol=all);
 
\[ y = \left (c_1 \,{\mathrm e}^{5 x}+c_2 -4 x \right ) {\mathrm e}^{-2 x} \]
Mathematica. Time used: 0.016 (sec). Leaf size: 32
ode=D[y[x],{x,2}]-D[y[x],x]-6*y[x]==20*Exp[-2*x]; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to \frac {1}{5} e^{-2 x} \left (-20 x+5 c_2 e^{5 x}-4+5 c_1\right ) \end{align*}
Sympy. Time used: 0.132 (sec). Leaf size: 19
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(-6*y(x) - Derivative(y(x), x) + Derivative(y(x), (x, 2)) - 20*exp(-2*x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = C_{2} e^{3 x} + \left (C_{1} - 4 x\right ) e^{- 2 x} \]