44.10.4 problem 1(d)

Internal problem ID [9259]
Book : Differential Equations: Theory, Technique, and Practice by George Simmons, Steven Krantz. McGraw-Hill NY. 2007. 1st Edition.
Section : Chapter 2. Second-Order Linear Equations. Section 2.2. THE METHOD OF UNDETERMINED COEFFICIENTS. Page 67
Problem number : 1(d)
Date solved : Tuesday, September 30, 2025 at 06:15:46 PM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

\begin{align*} y^{\prime \prime }-2 y^{\prime }+5 y&=25 x^{2}+12 \end{align*}
Maple. Time used: 0.002 (sec). Leaf size: 30
ode:=diff(diff(y(x),x),x)-2*diff(y(x),x)+5*y(x) = 25*x^2+12; 
dsolve(ode,y(x), singsol=all);
 
\[ y = {\mathrm e}^{x} \sin \left (2 x \right ) c_2 +{\mathrm e}^{x} \cos \left (2 x \right ) c_1 +5 x^{2}+4 x +2 \]
Mathematica. Time used: 0.012 (sec). Leaf size: 35
ode=D[y[x],{x,2}]-2*D[y[x],x]+5*y[x]==25*x^2+12; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to 5 x^2+4 x+c_2 e^x \cos (2 x)+c_1 e^x \sin (2 x)+2 \end{align*}
Sympy. Time used: 0.117 (sec). Leaf size: 29
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(-25*x**2 + 5*y(x) - 2*Derivative(y(x), x) + Derivative(y(x), (x, 2)) - 12,0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = 5 x^{2} + 4 x + \left (C_{1} \sin {\left (2 x \right )} + C_{2} \cos {\left (2 x \right )}\right ) e^{x} + 2 \]