6.52 Problems 5101 to 5200

Table 6.103: Main lookup table sequentially arranged

#

ODE

Mathematica

Maple

Sympy

5101

\[ {} \left (5-2 x -3 y\right ) y^{\prime }+1-2 x -3 y = 0 \]

5102

\[ {} \left (1+9 x -3 y\right ) y^{\prime }+2+3 x -y = 0 \]

5103

\[ {} \left (x +4 y\right ) y^{\prime }+4 x -y = 0 \]

5104

\[ {} \left (3+2 x +4 y\right ) y^{\prime } = x +2 y+1 \]

5105

\[ {} \left (5+2 x -4 y\right ) y^{\prime } = x -2 y+3 \]

5106

\[ {} \left (5+3 x -4 y\right ) y^{\prime } = 2+7 x -3 y \]

5107

\[ {} 4 \left (1-x -y\right ) y^{\prime }+2-x = 0 \]

5108

\[ {} \left (11-11 x -4 y\right ) y^{\prime } = 62-8 x -25 y \]

5109

\[ {} \left (6+3 x +5 y\right ) y^{\prime } = 2+x +7 y \]

5110

\[ {} \left (7 x +5 y\right ) y^{\prime }+10 x +8 y = 0 \]

5111

\[ {} \left (x +4 x^{3}+5 y\right ) y^{\prime }+7 x^{3}+3 x^{2} y+4 y = 0 \]

5112

\[ {} \left (5-x +6 y\right ) y^{\prime } = 3-x +4 y \]

5113

\[ {} 3 \left (2 y+x \right ) y^{\prime } = 1-x -2 y \]

5114

\[ {} 3 y-7 x +7+\left (7 y-3 x +3\right ) y^{\prime } = 0 \]

5115

\[ {} \left (1+x +9 y\right ) y^{\prime }+1+x +5 y = 0 \]

5116

\[ {} \left (8+5 x -12 y\right ) y^{\prime } = 3+2 x -5 y \]

5117

\[ {} \left (140+7 x -16 y\right ) y^{\prime }+25+8 x +y = 0 \]

5118

\[ {} \left (3+9 x +21 y\right ) y^{\prime } = 45+7 x -5 y \]

5119

\[ {} \left (a x +b y\right ) y^{\prime }+x = 0 \]

5120

\[ {} \left (a x +b y\right ) y^{\prime }+y = 0 \]

5121

\[ {} \left (a x +b y\right ) y^{\prime }+b x +a y = 0 \]

5122

\[ {} \left (a x +b y\right ) y^{\prime } = b x +a y \]

5123

\[ {} \left (a_{2} +b x +c_{2} y\right ) y^{\prime }+a_{1} +b_{1} x +b y = 0 \]

5124

\[ {} \left (a_{2} +b_{2} x +c_{2} y\right ) y^{\prime } = a_{1} +b_{1} x +c_{1} y \]

5125

\[ {} y y^{\prime } x +1+y^{2} = 0 \]

5126

\[ {} y y^{\prime } x = x +y^{2} \]

5127

\[ {} y y^{\prime } x +x^{2}+y^{2} = 0 \]

5128

\[ {} y y^{\prime } x +x^{4}-y^{2} = 0 \]

5129

\[ {} y y^{\prime } x = a \,x^{3} \cos \left (x \right )+y^{2} \]

5130

\[ {} y y^{\prime } x = x^{2}-x y+y^{2} \]

5131

\[ {} y y^{\prime } x +2 x^{2}-2 x y-y^{2} = 0 \]

5132

\[ {} y y^{\prime } x = a +b y^{2} \]

5133

\[ {} y y^{\prime } x = a \,x^{n}+b y^{2} \]

5134

\[ {} y y^{\prime } x = \left (x^{2}+1\right ) \left (1-y^{2}\right ) \]

5135

\[ {} y y^{\prime } x +x^{2} \operatorname {arccot}\left (\frac {y}{x}\right )-y^{2} = 0 \]

5136

\[ {} y y^{\prime } x +x^{2} {\mathrm e}^{-\frac {2 y}{x}}-y^{2} = 0 \]

5137

\[ {} \left (x y+1\right ) y^{\prime }+y^{2} = 0 \]

5138

\[ {} x \left (1+y\right ) y^{\prime }-\left (1-x \right ) y = 0 \]

5139

\[ {} x \left (1-y\right ) y^{\prime }+\left (1+x \right ) y = 0 \]

5140

\[ {} x \left (1-y\right ) y^{\prime }+\left (1-x \right ) y = 0 \]

5141

\[ {} x \left (y+2\right ) y^{\prime }+a x = 0 \]

5142

\[ {} \left (2+3 x -x y\right ) y^{\prime }+y = 0 \]

5143

\[ {} x \left (4+y\right ) y^{\prime } = 2 x +2 y+y^{2} \]

5144

\[ {} x \left (a +y\right ) y^{\prime }+b x +c y = 0 \]

5145

\[ {} x \left (a +y\right ) y^{\prime } = y \left (B x +A \right ) \]

5146

\[ {} x \left (x +y\right ) y^{\prime }+y^{2} = 0 \]

5147

\[ {} x \left (x -y\right ) y^{\prime }+y^{2} = 0 \]

5148

\[ {} x \left (x +y\right ) y^{\prime } = x^{2}+y^{2} \]

5149

\[ {} x \left (x -y\right ) y^{\prime }+2 x^{2}+3 x y-y^{2} = 0 \]

5150

\[ {} x \left (x +y\right ) y^{\prime }-y \left (x +y\right )+x \sqrt {x^{2}-y^{2}} = 0 \]

5151

\[ {} \left (a +x \left (x +y\right )\right ) y^{\prime } = b \left (x +y\right ) y \]

5152

\[ {} x \left (y+2 x \right ) y^{\prime } = x^{2}+x y-y^{2} \]

5153

\[ {} x \left (4 x -y\right ) y^{\prime }+4 x^{2}-6 x y-y^{2} = 0 \]

5154

\[ {} x \left (x^{3}+y\right ) y^{\prime } = \left (x^{3}-y\right ) y \]

5155

\[ {} x \left (2 x^{3}+y\right ) y^{\prime } = \left (2 x^{3}-y\right ) y \]

5156

\[ {} x \left (2 x^{3}+y\right ) y^{\prime } = 6 y^{2} \]

5157

\[ {} y \left (1-x \right ) y^{\prime }+x \left (1-y\right ) = 0 \]

5158

\[ {} \left (x +a \right ) \left (x +b \right ) y^{\prime } = x y \]

5159

\[ {} 2 y y^{\prime } x +1-2 x^{3}-y^{2} = 0 \]

5160

\[ {} 2 y y^{\prime } x +a +y^{2} = 0 \]

5161

\[ {} 2 y y^{\prime } x = a x +y^{2} \]

5162

\[ {} x^{2}+y^{2}+2 y y^{\prime } x = 0 \]

5163

\[ {} 2 y y^{\prime } x = x^{2}+y^{2} \]

5164

\[ {} 2 y y^{\prime } x = 4 x^{2} \left (2 x +1\right )+y^{2} \]

5165

\[ {} 2 y y^{\prime } x +x^{2} \left (a \,x^{3}+1\right ) = 6 y^{2} \]

5166

\[ {} \left (3-x +2 x y\right ) y^{\prime }+3 x^{2}-y+y^{2} = 0 \]

5167

\[ {} x \left (x -2 y\right ) y^{\prime }+y^{2} = 0 \]

5168

\[ {} x \left (2 y+x \right ) y^{\prime }+\left (2 x -y\right ) y = 0 \]

5169

\[ {} x \left (x -2 y\right ) y^{\prime }+\left (2 x -y\right ) y = 0 \]

5170

\[ {} x \left (x -2 y+1\right ) y^{\prime }+\left (1-2 x +y\right ) y = 0 \]

5171

\[ {} x \left (1-x -2 y\right ) y^{\prime }+\left (2 x +y+1\right ) y = 0 \]

5172

\[ {} 2 x \left (2 x^{2}+y\right ) y^{\prime }+\left (12 x^{2}+y\right ) y = 0 \]

5173

\[ {} 2 \left (1+x \right ) y y^{\prime }+2 x -3 x^{2}+y^{2} = 0 \]

5174

\[ {} x \left (2 x +3 y\right ) y^{\prime } = y^{2} \]

5175

\[ {} x \left (2 x +3 y\right ) y^{\prime }+3 \left (x +y\right )^{2} = 0 \]

5176

\[ {} \left (3+6 x y+x^{2}\right ) y^{\prime }+2 x +2 x y+3 y^{2} = 0 \]

5177

\[ {} 3 x \left (2 y+x \right ) y^{\prime }+x^{3}+3 y \left (y+2 x \right ) = 0 \]

5178

\[ {} a x y y^{\prime } = x^{2}+y^{2} \]

5179

\[ {} a x y y^{\prime }+x^{2}-y^{2} = 0 \]

5180

\[ {} x \left (b y+a \right ) y^{\prime } = c y \]

5181

\[ {} x \left (x -a y\right ) y^{\prime } = y \left (-a x +y\right ) \]

5182

\[ {} \left (1-x^{2} y\right ) y^{\prime }+1-x y^{2} = 0 \]

5183

\[ {} \left (1-x^{2} y\right ) y^{\prime }-1+x y^{2} = 0 \]

5184

\[ {} x \left (1-x y\right ) y^{\prime }+\left (x y+1\right ) y = 0 \]

5185

\[ {} x \left (2+x y\right ) y^{\prime } = 3+2 x^{3}-2 y-x y^{2} \]

5186

\[ {} x \left (2-x y\right ) y^{\prime }+2 y-x y^{2} \left (x y+1\right ) = 0 \]

5187

\[ {} x \left (3-x y\right ) y^{\prime } = y \left (x y-1\right ) \]

5188

\[ {} x^{2} \left (1-y\right ) y^{\prime }+\left (1-x \right ) y = 0 \]

5189

\[ {} x^{2} \left (1-y\right ) y^{\prime }+\left (1+x \right ) y^{2} = 0 \]

5190

\[ {} \left (x^{2}+1\right ) y y^{\prime }+x \left (1-y^{2}\right ) = 0 \]

5191

\[ {} \left (-x^{2}+1\right ) y y^{\prime }+2 x^{2}+x y^{2} = 0 \]

5192

\[ {} 2 x^{2} y y^{\prime } = x^{2} \left (2 x +1\right )-y^{2} \]

5193

\[ {} x \left (1-2 x y\right ) y^{\prime }+y \left (2 x y+1\right ) = 0 \]

5194

\[ {} x \left (2 x y+1\right ) y^{\prime }+\left (2+3 x y\right ) y = 0 \]

5195

\[ {} x \left (2 x y+1\right ) y^{\prime }+\left (1+2 x y-x^{2} y^{2}\right ) y = 0 \]

5196

\[ {} x^{2} \left (x -2 y\right ) y^{\prime } = 2 x^{3}-4 x y^{2}+y^{3} \]

5197

\[ {} 2 \left (1+x \right ) x y y^{\prime } = 1+y^{2} \]

5198

\[ {} 3 x^{2} y y^{\prime }+1+2 x y^{2} = 0 \]

5199

\[ {} x^{2} \left (4 x -3 y\right ) y^{\prime } = \left (6 x^{2}-3 x y+2 y^{2}\right ) y \]

5200

\[ {} \left (1-x^{3} y\right ) y^{\prime } = x^{2} y^{2} \]