| # | ODE | Mathematica | Maple | Sympy |
| \[
{} \left (5-2 x -3 y\right ) y^{\prime }+1-2 x -3 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \left (1+9 x -3 y\right ) y^{\prime }+2+3 x -y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \left (x +4 y\right ) y^{\prime }+4 x -y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \left (3+2 x +4 y\right ) y^{\prime } = x +2 y+1
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \left (5+2 x -4 y\right ) y^{\prime } = x -2 y+3
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \left (5+3 x -4 y\right ) y^{\prime } = 2+7 x -3 y
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 4 \left (1-x -y\right ) y^{\prime }+2-x = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \left (11-11 x -4 y\right ) y^{\prime } = 62-8 x -25 y
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \left (6+3 x +5 y\right ) y^{\prime } = 2+x +7 y
\]
|
✓ |
✓ |
✗ |
|
| \[
{} \left (7 x +5 y\right ) y^{\prime }+10 x +8 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \left (x +4 x^{3}+5 y\right ) y^{\prime }+7 x^{3}+3 x^{2} y+4 y = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} \left (5-x +6 y\right ) y^{\prime } = 3-x +4 y
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 3 \left (2 y+x \right ) y^{\prime } = 1-x -2 y
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 3 y-7 x +7+\left (7 y-3 x +3\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \left (1+x +9 y\right ) y^{\prime }+1+x +5 y = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} \left (8+5 x -12 y\right ) y^{\prime } = 3+2 x -5 y
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \left (140+7 x -16 y\right ) y^{\prime }+25+8 x +y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \left (3+9 x +21 y\right ) y^{\prime } = 45+7 x -5 y
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \left (a x +b y\right ) y^{\prime }+x = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} \left (a x +b y\right ) y^{\prime }+y = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} \left (a x +b y\right ) y^{\prime }+b x +a y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \left (a x +b y\right ) y^{\prime } = b x +a y
\]
|
✓ |
✓ |
✗ |
|
| \[
{} \left (a_{2} +b x +c_{2} y\right ) y^{\prime }+a_{1} +b_{1} x +b y = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} \left (a_{2} +b_{2} x +c_{2} y\right ) y^{\prime } = a_{1} +b_{1} x +c_{1} y
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y y^{\prime } x +1+y^{2} = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y y^{\prime } x = x +y^{2}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y y^{\prime } x +x^{2}+y^{2} = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y y^{\prime } x +x^{4}-y^{2} = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y y^{\prime } x = a \,x^{3} \cos \left (x \right )+y^{2}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y y^{\prime } x = x^{2}-x y+y^{2}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y y^{\prime } x +2 x^{2}-2 x y-y^{2} = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y y^{\prime } x = a +b y^{2}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y y^{\prime } x = a \,x^{n}+b y^{2}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y y^{\prime } x = \left (x^{2}+1\right ) \left (1-y^{2}\right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y y^{\prime } x +x^{2} \operatorname {arccot}\left (\frac {y}{x}\right )-y^{2} = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y y^{\prime } x +x^{2} {\mathrm e}^{-\frac {2 y}{x}}-y^{2} = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} \left (x y+1\right ) y^{\prime }+y^{2} = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x \left (1+y\right ) y^{\prime }-\left (1-x \right ) y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x \left (1-y\right ) y^{\prime }+\left (1+x \right ) y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x \left (1-y\right ) y^{\prime }+\left (1-x \right ) y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x \left (y+2\right ) y^{\prime }+a x = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \left (2+3 x -x y\right ) y^{\prime }+y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x \left (4+y\right ) y^{\prime } = 2 x +2 y+y^{2}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x \left (a +y\right ) y^{\prime }+b x +c y = 0
\]
|
✗ |
✗ |
✗ |
|
| \[
{} x \left (a +y\right ) y^{\prime } = y \left (B x +A \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x \left (x +y\right ) y^{\prime }+y^{2} = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x \left (x -y\right ) y^{\prime }+y^{2} = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x \left (x +y\right ) y^{\prime } = x^{2}+y^{2}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} x \left (x -y\right ) y^{\prime }+2 x^{2}+3 x y-y^{2} = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x \left (x +y\right ) y^{\prime }-y \left (x +y\right )+x \sqrt {x^{2}-y^{2}} = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \left (a +x \left (x +y\right )\right ) y^{\prime } = b \left (x +y\right ) y
\]
|
✗ |
✗ |
✗ |
|
| \[
{} x \left (y+2 x \right ) y^{\prime } = x^{2}+x y-y^{2}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x \left (4 x -y\right ) y^{\prime }+4 x^{2}-6 x y-y^{2} = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x \left (x^{3}+y\right ) y^{\prime } = \left (x^{3}-y\right ) y
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x \left (2 x^{3}+y\right ) y^{\prime } = \left (2 x^{3}-y\right ) y
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x \left (2 x^{3}+y\right ) y^{\prime } = 6 y^{2}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y \left (1-x \right ) y^{\prime }+x \left (1-y\right ) = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \left (x +a \right ) \left (x +b \right ) y^{\prime } = x y
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 2 y y^{\prime } x +1-2 x^{3}-y^{2} = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 2 y y^{\prime } x +a +y^{2} = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 2 y y^{\prime } x = a x +y^{2}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{2}+y^{2}+2 y y^{\prime } x = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 2 y y^{\prime } x = x^{2}+y^{2}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 2 y y^{\prime } x = 4 x^{2} \left (2 x +1\right )+y^{2}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 2 y y^{\prime } x +x^{2} \left (a \,x^{3}+1\right ) = 6 y^{2}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \left (3-x +2 x y\right ) y^{\prime }+3 x^{2}-y+y^{2} = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} x \left (x -2 y\right ) y^{\prime }+y^{2} = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x \left (2 y+x \right ) y^{\prime }+\left (2 x -y\right ) y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x \left (x -2 y\right ) y^{\prime }+\left (2 x -y\right ) y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x \left (x -2 y+1\right ) y^{\prime }+\left (1-2 x +y\right ) y = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} x \left (1-x -2 y\right ) y^{\prime }+\left (2 x +y+1\right ) y = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} 2 x \left (2 x^{2}+y\right ) y^{\prime }+\left (12 x^{2}+y\right ) y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 2 \left (1+x \right ) y y^{\prime }+2 x -3 x^{2}+y^{2} = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x \left (2 x +3 y\right ) y^{\prime } = y^{2}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x \left (2 x +3 y\right ) y^{\prime }+3 \left (x +y\right )^{2} = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \left (3+6 x y+x^{2}\right ) y^{\prime }+2 x +2 x y+3 y^{2} = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} 3 x \left (2 y+x \right ) y^{\prime }+x^{3}+3 y \left (y+2 x \right ) = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} a x y y^{\prime } = x^{2}+y^{2}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} a x y y^{\prime }+x^{2}-y^{2} = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x \left (b y+a \right ) y^{\prime } = c y
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x \left (x -a y\right ) y^{\prime } = y \left (-a x +y\right )
\]
|
✓ |
✓ |
✗ |
|
| \[
{} \left (1-x^{2} y\right ) y^{\prime }+1-x y^{2} = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} \left (1-x^{2} y\right ) y^{\prime }-1+x y^{2} = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} x \left (1-x y\right ) y^{\prime }+\left (x y+1\right ) y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x \left (2+x y\right ) y^{\prime } = 3+2 x^{3}-2 y-x y^{2}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} x \left (2-x y\right ) y^{\prime }+2 y-x y^{2} \left (x y+1\right ) = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x \left (3-x y\right ) y^{\prime } = y \left (x y-1\right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{2} \left (1-y\right ) y^{\prime }+\left (1-x \right ) y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{2} \left (1-y\right ) y^{\prime }+\left (1+x \right ) y^{2} = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \left (x^{2}+1\right ) y y^{\prime }+x \left (1-y^{2}\right ) = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \left (-x^{2}+1\right ) y y^{\prime }+2 x^{2}+x y^{2} = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 2 x^{2} y y^{\prime } = x^{2} \left (2 x +1\right )-y^{2}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x \left (1-2 x y\right ) y^{\prime }+y \left (2 x y+1\right ) = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x \left (2 x y+1\right ) y^{\prime }+\left (2+3 x y\right ) y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x \left (2 x y+1\right ) y^{\prime }+\left (1+2 x y-x^{2} y^{2}\right ) y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{2} \left (x -2 y\right ) y^{\prime } = 2 x^{3}-4 x y^{2}+y^{3}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 2 \left (1+x \right ) x y y^{\prime } = 1+y^{2}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 3 x^{2} y y^{\prime }+1+2 x y^{2} = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{2} \left (4 x -3 y\right ) y^{\prime } = \left (6 x^{2}-3 x y+2 y^{2}\right ) y
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \left (1-x^{3} y\right ) y^{\prime } = x^{2} y^{2}
\]
|
✓ |
✓ |
✗ |
|