23.1.581 problem 574

Internal problem ID [5188]
Book : Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section : Part II. Chapter 1. THE DIFFERENTIAL EQUATION IS OF FIRST ORDER AND OF FIRST DEGREE, page 223
Problem number : 574
Date solved : Tuesday, September 30, 2025 at 11:51:50 AM
CAS classification : [_separable]

\begin{align*} x^{2} \left (1-y\right ) y^{\prime }+\left (1-x \right ) y&=0 \end{align*}
Maple. Time used: 0.012 (sec). Leaf size: 29
ode:=x^2*(1-y(x))*diff(y(x),x)+(1-x)*y(x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ y = x \,{\mathrm e}^{\frac {-\operatorname {LambertW}\left (-x \,{\mathrm e}^{c_1 +\frac {1}{x}}\right ) x +c_1 x +1}{x}} \]
Mathematica. Time used: 0.09 (sec). Leaf size: 42
ode=x^2*(1-y[x])*D[y[x],x]+(1-x)*y[x]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to \text {InverseFunction}\left [\int _1^{\text {$\#$1}}\frac {K[1]-1}{K[1]}dK[1]\&\right ]\left [-\frac {1}{x}-\log (x)+1+c_1\right ]\\ y(x)&\to 0 \end{align*}
Sympy. Time used: 0.290 (sec). Leaf size: 14
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(x**2*(1 - y(x))*Derivative(y(x), x) + (1 - x)*y(x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = - W\left (C_{1} x e^{\frac {1}{x}}\right ) \]