6.47 Problems 4601 to 4700

Table 6.93: Main lookup table sequentially arranged

#

ODE

Mathematica

Maple

Sympy

4601

\[ {} x^{2} y^{\prime \prime }+\left (\frac {1}{2} x +x^{2}\right ) y^{\prime }+x y = 0 \]

4602

\[ {} x^{2} y^{\prime \prime }+\left (-x^{2}+x \right ) y^{\prime }-\left (1+x \right ) y = 0 \]

4603

\[ {} x^{2} y^{\prime \prime }+2 x y^{\prime }-\left (x^{2}+2\right ) y = 0 \]

4604

\[ {} x y^{\prime \prime }-2 x y^{\prime }-y = 0 \]

4605

\[ {} -x y+2 y^{\prime }+x y^{\prime \prime } = 0 \]

4606

\[ {} x^{2} y^{\prime \prime }-x^{2} y^{\prime }+2 \left (x -1\right ) y = 0 \]

4607

\[ {} x y^{\prime \prime }+y^{\prime }-x y = 0 \]

4608

\[ {} y^{\prime } = f \left (x \right ) a \]

4609

\[ {} y^{\prime } = x +\sin \left (x \right )+y \]

4610

\[ {} y^{\prime } = x^{2}+3 \cosh \left (x \right )+2 y \]

4611

\[ {} y^{\prime } = x^{2}+3 \cosh \left (x \right )-2 y \]

4612

\[ {} y^{\prime } = a +b x +c y \]

4613

\[ {} y^{\prime } = a \cos \left (b x +c \right )+k y \]

4614

\[ {} y^{\prime } = a \sin \left (b x +c \right )+k y \]

4615

\[ {} y^{\prime } = a +b \,{\mathrm e}^{k x}+c y \]

4616

\[ {} y^{\prime } = x \left (-y+x^{2}\right ) \]

4617

\[ {} y^{\prime } = x \left ({\mathrm e}^{-x^{2}}+a y\right ) \]

4618

\[ {} y^{\prime } = x^{2} \left (a \,x^{3}+b y\right ) \]

4619

\[ {} y^{\prime } = a \,x^{n} y \]

4620

\[ {} y^{\prime } = \cos \left (x \right ) \sin \left (x \right )+y \cos \left (x \right ) \]

4621

\[ {} y^{\prime } = \cos \left (x \right ) \sin \left (x \right )-y \cos \left (x \right ) \]

4622

\[ {} y^{\prime } = {\mathrm e}^{\sin \left (x \right )}+y \cos \left (x \right ) \]

4623

\[ {} y^{\prime } = {\mathrm e}^{-\sin \left (x \right )}+y \cos \left (x \right ) \]

4624

\[ {} y^{\prime } = {\mathrm e}^{\sin \left (x \right )}-y \cos \left (x \right ) \]

4625

\[ {} y^{\prime } = {\mathrm e}^{-\sin \left (x \right )}-y \cos \left (x \right ) \]

4626

\[ {} y^{\prime } = y \cot \left (x \right ) \]

4627

\[ {} y^{\prime } = 1-y \cot \left (x \right ) \]

4628

\[ {} y^{\prime } = x \csc \left (x \right )-y \cot \left (x \right ) \]

4629

\[ {} y^{\prime } = \left (2 \csc \left (2 x \right )+\cot \left (x \right )\right ) y \]

4630

\[ {} y^{\prime } = \sec \left (x \right )-y \cot \left (x \right ) \]

4631

\[ {} y^{\prime } = {\mathrm e}^{x} \sin \left (x \right )+y \cot \left (x \right ) \]

4632

\[ {} y^{\prime }+\csc \left (x \right )+2 y \cot \left (x \right ) = 0 \]

4633

\[ {} y^{\prime } = 2 \csc \left (2 x \right ) \sec \left (x \right )^{2}-2 y \cot \left (2 x \right ) \]

4634

\[ {} y^{\prime } = 2 \cot \left (x \right )^{2} \cos \left (2 x \right )-2 y \csc \left (2 x \right ) \]

4635

\[ {} y^{\prime } = 2 \csc \left (2 x \right ) \left (\sin \left (x \right )^{3}+y\right ) \]

4636

\[ {} y^{\prime } = 2 \csc \left (2 x \right ) \left (1-\tan \left (x \right )^{2}+y\right ) \]

4637

\[ {} y^{\prime } = y \sec \left (x \right ) \]

4638

\[ {} y^{\prime }+\tan \left (x \right ) = \left (1-y\right ) \sec \left (x \right ) \]

4639

\[ {} y^{\prime } = y \tan \left (x \right ) \]

4640

\[ {} y^{\prime } = \cos \left (x \right )+y \tan \left (x \right ) \]

4641

\[ {} y^{\prime } = \cos \left (x \right )-y \tan \left (x \right ) \]

4642

\[ {} y^{\prime } = \sec \left (x \right )-y \tan \left (x \right ) \]

4643

\[ {} y^{\prime } = \sin \left (2 x \right )+y \tan \left (x \right ) \]

4644

\[ {} y^{\prime } = \sin \left (2 x \right )-y \tan \left (x \right ) \]

4645

\[ {} y^{\prime } = \sin \left (x \right )+2 y \tan \left (x \right ) \]

4646

\[ {} y^{\prime } = 2+2 \sec \left (2 x \right )+2 y \tan \left (2 x \right ) \]

4647

\[ {} y^{\prime } = \csc \left (x \right )+3 y \tan \left (x \right ) \]

4648

\[ {} y^{\prime } = \left (a +\cos \left (\ln \left (x \right )\right )+\sin \left (\ln \left (x \right )\right )\right ) y \]

4649

\[ {} y^{\prime } = 6 \,{\mathrm e}^{2 x}-y \tanh \left (x \right ) \]

4650

\[ {} y^{\prime } = f \left (x \right ) f^{\prime }\left (x \right )+f^{\prime }\left (x \right ) y \]

4651

\[ {} y^{\prime } = f \left (x \right ) f^{\prime }\left (x \right )-f^{\prime }\left (x \right ) y \]

4652

\[ {} y^{\prime } = f \left (x \right )+g \left (x \right ) y \]

4653

\[ {} y^{\prime } = x^{2}-y^{2} \]

4654

\[ {} y^{\prime }+f \left (x \right )^{2} = f^{\prime }\left (x \right )+y^{2} \]

4655

\[ {} y^{\prime }+1-x = y \left (x +y\right ) \]

4656

\[ {} y^{\prime } = \left (x +y\right )^{2} \]

4657

\[ {} y^{\prime } = \left (x -y\right )^{2} \]

4658

\[ {} y^{\prime } = -3 x +3 y+3+\left (x -y\right )^{2} \]

4659

\[ {} y^{\prime } = 2 x -\left (x^{2}+1\right ) y+y^{2} \]

4660

\[ {} y^{\prime } = x \left (x^{3}+2\right )-\left (2 x^{2}-y\right ) y \]

4661

\[ {} y^{\prime } = 1+x \left (-x^{3}+2\right )+\left (2 x^{2}-y\right ) y \]

4662

\[ {} y^{\prime } = \cos \left (x \right )-\left (\sin \left (x \right )-y\right ) y \]

4663

\[ {} y^{\prime } = \cos \left (2 x \right )+\left (\sin \left (2 x \right )+y\right ) y \]

4664

\[ {} y^{\prime } = f \left (x \right )+x f \left (x \right ) y+y^{2} \]

4665

\[ {} y^{\prime } = \left (3+x -4 y\right )^{2} \]

4666

\[ {} y^{\prime } = \left (1+4 x +9 y\right )^{2} \]

4667

\[ {} y^{\prime } = 3 a +3 b x +3 b y^{2} \]

4668

\[ {} y^{\prime } = a +b y^{2} \]

4669

\[ {} y^{\prime } = a x +b y^{2} \]

4670

\[ {} y^{\prime } = a +b x +c y^{2} \]

4671

\[ {} y^{\prime } = a \,x^{n -1}+b \,x^{2 n}+c y^{2} \]

4672

\[ {} y^{\prime } = a \,x^{n}+b y^{2} \]

4673

\[ {} y^{\prime } = a_{0} +y a_{1} +a_{2} y^{2} \]

4674

\[ {} y^{\prime } = f \left (x \right )+a y+b y^{2} \]

4675

\[ {} y^{\prime } = 1+a \left (x -y\right ) y \]

4676

\[ {} y^{\prime } = f \left (x \right )+g \left (x \right ) y+a y^{2} \]

4677

\[ {} y^{\prime } = x y \left (3+y\right ) \]

4678

\[ {} y^{\prime } = 1-x -x^{3}+\left (2 x^{2}+1\right ) y-x y^{2} \]

4679

\[ {} y^{\prime } = x \left (2+x^{2} y-y^{2}\right ) \]

4680

\[ {} y^{\prime } = x +\left (1-2 x \right ) y-\left (1-x \right ) y^{2} \]

4681

\[ {} y^{\prime } = a x y^{2} \]

4682

\[ {} y^{\prime } = x^{n} \left (a +b y^{2}\right ) \]

4683

\[ {} y^{\prime } = a \,x^{m}+b \,x^{n} y^{2} \]

4684

\[ {} y^{\prime } = \left (a +b y \cos \left (k x \right )\right ) y \]

4685

\[ {} y^{\prime } = \sin \left (x \right ) \left (2 \sec \left (x \right )^{2}-y^{2}\right ) \]

4686

\[ {} y^{\prime }+4 \csc \left (x \right ) = \left (3-\cot \left (x \right )\right ) y+\sin \left (x \right ) y^{2} \]

4687

\[ {} y^{\prime } = y \sec \left (x \right )+\left (\sin \left (x \right )-1\right )^{2} \]

4688

\[ {} y^{\prime }+\tan \left (x \right ) \left (1-y^{2}\right ) = 0 \]

4689

\[ {} y^{\prime } = f \left (x \right )+g \left (x \right ) y+h \left (x \right ) y^{2} \]

4690

\[ {} y^{\prime } = \left (a +b y+c y^{2}\right ) f \left (x \right ) \]

4691

\[ {} y^{\prime }+\left (a x +y\right ) y^{2} = 0 \]

4692

\[ {} y^{\prime } = \left (a \,{\mathrm e}^{x}+y\right ) y^{2} \]

4693

\[ {} y^{\prime }+3 a \left (y+2 x \right ) y^{2} = 0 \]

4694

\[ {} y^{\prime } = y \left (a +b y^{2}\right ) \]

4695

\[ {} y^{\prime } = a_{0} +y a_{1} +a_{2} y^{2}+a_{3} y^{3} \]

4696

\[ {} y^{\prime } = x y^{3} \]

4697

\[ {} y^{\prime }+y \left (1-x y^{2}\right ) = 0 \]

4698

\[ {} y^{\prime } = \left (a +b x y\right ) y^{2} \]

4699

\[ {} y^{\prime }+2 x y \left (1+a \,x^{2} y^{2}\right ) = 0 \]

4700

\[ {} y^{\prime }+2 x y \left (1-a \,x^{2} y^{2}\right ) = 0 \]