23.1.18 problem 13 (d)

Internal problem ID [4625]
Book : Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section : Part II. Chapter 1. THE DIFFERENTIAL EQUATION IS OF FIRST ORDER AND OF FIRST DEGREE, page 223
Problem number : 13 (d)
Date solved : Tuesday, September 30, 2025 at 07:37:20 AM
CAS classification : [_linear]

\begin{align*} y^{\prime }&={\mathrm e}^{-\sin \left (x \right )}-y \cos \left (x \right ) \end{align*}
Maple. Time used: 0.001 (sec). Leaf size: 13
ode:=diff(y(x),x) = exp(-sin(x))-cos(x)*y(x); 
dsolve(ode,y(x), singsol=all);
 
\[ y = \left (x +c_1 \right ) {\mathrm e}^{-\sin \left (x \right )} \]
Mathematica. Time used: 0.078 (sec). Leaf size: 16
ode=D[y[x],x]==Exp[-Sin[x]]-y[x]*Cos[x]; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to (x+c_1) e^{-\sin (x)} \end{align*}
Sympy. Time used: 0.599 (sec). Leaf size: 10
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(y(x)*cos(x) + Derivative(y(x), x) - exp(-sin(x)),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = \left (C_{1} + x\right ) e^{- \sin {\left (x \right )}} \]