| # | ODE | Mathematica | Maple | Sympy |
| \[
{} y^{\prime \prime }+{\mathrm e}^{-2 y} = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime \prime }+{\mathrm e}^{-2 y} = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} 2 y^{\prime \prime } = \sin \left (2 y\right )
\]
|
✓ |
✗ |
✗ |
|
| \[
{} 2 y^{\prime \prime } = \sin \left (2 y\right )
\]
|
✓ |
✗ |
✗ |
|
| \[
{} -x^{2} y^{\prime }+x^{3} y^{\prime \prime } = -x^{2}+3
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime } = {y^{\prime }}^{2}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime } = {\mathrm e}^{x} {y^{\prime }}^{2}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 2 y^{\prime \prime } = {y^{\prime }}^{3} \sin \left (2 x \right )
\]
|
✓ |
✓ |
✗ |
|
| \[
{} {y^{\prime }}^{2}+x^{2} y^{\prime \prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime } = 1+{y^{\prime }}^{2}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime } = \left (1+{y^{\prime }}^{2}\right )^{{3}/{2}}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y y^{\prime \prime } = {y^{\prime }}^{2} \left (1-y^{\prime } \sin \left (y\right )-\cos \left (y\right ) y y^{\prime }\right )
\]
|
✓ |
✓ |
✗ |
|
| \[
{} \left (1+y^{2}\right ) y^{\prime \prime }+{y^{\prime }}^{3}+y^{\prime } = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} \left (1+{y^{\prime }}^{2}+y y^{\prime \prime }\right )^{2} = \left (1+{y^{\prime }}^{2}\right )^{3}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} x^{2} y^{\prime \prime } = y^{\prime } \left (2 x -y^{\prime }\right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{2} y^{\prime \prime } = \left (3 x -2 y^{\prime }\right ) y^{\prime }
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x y^{\prime \prime } = y^{\prime } \left (2-3 x y^{\prime }\right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{4} y^{\prime \prime } = y^{\prime } \left (y^{\prime }+x^{3}\right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime } = 2 x +\left (x^{2}-y^{\prime }\right )^{2}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} {y^{\prime \prime }}^{2}-2 y^{\prime \prime }+{y^{\prime }}^{2}-2 x y^{\prime }+x^{2} = 0
\]
|
✗ |
✓ |
✗ |
|
| \[
{} y^{\prime }-x y^{\prime \prime }+{y^{\prime \prime }}^{2} = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} {y^{\prime \prime }}^{3} = 12 y^{\prime } \left (x y^{\prime \prime }-2 y^{\prime }\right )
\]
|
✗ |
✓ |
✗ |
|
| \[
{} 3 y y^{\prime } y^{\prime \prime } = -1+{y^{\prime }}^{3}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} 4 y {y^{\prime }}^{2} y^{\prime \prime } = 3+{y^{\prime }}^{4}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime } = 2 y
\]
|
✓ |
✓ |
✓ |
|
| \[
{} t y^{\prime } = y
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+4 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = 2 y \left (-1+y\right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 2 y y^{\prime } = 1
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 2 y y^{\prime } = y^{2}+t -1
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = \frac {y^{2}-4 t y+6 t^{2}}{t^{2}}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = 3 y+12
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = -y+3 t
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = y^{2}-y
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = 2 t y
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = -{\mathrm e}^{y}-1
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \left (t +1\right ) y^{\prime }+y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = y^{2}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = 3+t
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = {\mathrm e}^{2 t}-1
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = t \,{\mathrm e}^{-t}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = \frac {t +1}{t}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime } = 2 t +1
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime } = 6 \sin \left (3 t \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = 3 y+12
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = -y+3 t
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = y^{2}-y
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \left (t +1\right ) y^{\prime }+y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = {\mathrm e}^{2 t}-1
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = t \,{\mathrm e}^{-t}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime } = 6 \sin \left (3 t \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = t
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = y^{2}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = y \left (y+t \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = 1-y^{2}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = y-t
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = -t y
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = y-t^{2}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = t y^{2}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = \frac {t y}{y+1}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = y^{2}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = y \left (y+t \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = y-t
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = 1-y^{2}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = 2 y \left (5-y\right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y y^{\prime } = 1-y
\]
|
✓ |
✓ |
✓ |
|
| \[
{} t^{2} y^{\prime } = 1-2 t y
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \frac {y^{\prime }}{y} = y-t
\]
|
✓ |
✓ |
✓ |
|
| \[
{} t y^{\prime } = y-2 t y
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = t y^{2}-y^{2}+t -1
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \left (t^{2}+3 y^{2}\right ) y^{\prime } = -2 t y
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime } = t^{2}+y^{2}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} {\mathrm e}^{t} y^{\prime } = y^{3}-y
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y y^{\prime } = t
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 1-y^{2}-t y y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{3} y^{\prime } = t
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{4} y^{\prime } = t +2
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = t y^{2}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \tan \left (t \right ) y+y^{\prime } = \tan \left (t \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = t^{m} y^{n}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = 4 y-y^{2}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y y^{\prime } = 1+y^{2}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = 1+y^{2}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} t y y^{\prime }+t^{2}+1 = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y+1+\left (-1+y\right ) \left (t^{2}+1\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 2 y y^{\prime } = {\mathrm e}^{t}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \left (1-t \right ) y^{\prime } = y^{2}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} -y+y^{\prime } = y^{2}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime } = 4 t y^{2}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime } = \frac {x y+2 y}{x}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 2 t y+y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = \frac {\cot \left (y\right )}{t}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \frac {\left (u^{2}+1\right ) y^{\prime }}{y} = u
\]
|
✓ |
✓ |
✗ |
|
| \[
{} t y-\left (t +2\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = \frac {1+y^{2}}{t}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 3 y+y^{\prime } = {\mathrm e}^{t}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \cos \left (t \right ) y^{\prime }+\sin \left (t \right ) y = 1
\]
|
✓ |
✓ |
✓ |
|
| \[
{} -2 y+y^{\prime } = {\mathrm e}^{2 t}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} t y^{\prime }+y = {\mathrm e}^{t}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} t y^{\prime }+m y = t \ln \left (t \right )
\]
|
✓ |
✓ |
✓ |
|