90.1.10 problem 21

Internal problem ID [25034]
Book : Ordinary Differential Equations. By William Adkins and Mark G Davidson. Springer. NY. 2010. ISBN 978-1-4614-3617-1
Section : Chapter 1. First order differential equations. Exercises at page 13
Problem number : 21
Date solved : Thursday, October 02, 2025 at 11:47:39 PM
CAS classification : [_quadrature]

\begin{align*} y^{\prime }&=y^{2}-y \end{align*}
Maple. Time used: 0.002 (sec). Leaf size: 12
ode:=diff(y(t),t) = y(t)^2-y(t); 
dsolve(ode,y(t), singsol=all);
 
\[ y = \frac {1}{1+{\mathrm e}^{t} c_1} \]
Mathematica. Time used: 0.114 (sec). Leaf size: 25
ode=D[y[t],{t,1}]== y[t]^2-y[t]; 
ic={}; 
DSolve[{ode,ic},y[t],t,IncludeSingularSolutions->True]
 
\begin{align*} y(t)&\to \frac {1}{1+e^{t+c_1}}\\ y(t)&\to 0\\ y(t)&\to 1 \end{align*}
Sympy. Time used: 0.169 (sec). Leaf size: 8
from sympy import * 
t = symbols("t") 
y = Function("y") 
ode = Eq(-y(t)**2 + y(t) + Derivative(y(t), t),0) 
ics = {} 
dsolve(ode,func=y(t),ics=ics)
 
\[ y{\left (t \right )} = \frac {C_{1}}{C_{1} - e^{t}} \]