6.248 Problems 24701 to 24800

Table 6.495: Main lookup table sequentially arranged

#

ODE

Mathematica

Maple

Sympy

24701

\[ {} y^{\prime \prime }+y = {\mathrm e}^{3 x} \]

24702

\[ {} y^{\prime \prime }+y = 1+4 x \]

24703

\[ {} y^{\prime \prime }+y = \sin \left (2 x \right ) \]

24704

\[ {} y^{\prime \prime }+y = \cos \left (2 x \right ) \]

24705

\[ {} y^{\prime \prime }+y = {\mathrm e}^{x}-x +\sin \left (3 x \right ) \]

24706

\[ {} -y+y^{\prime \prime } = 2 x -3 \]

24707

\[ {} -y+y^{\prime \prime } = x +\sin \left (x \right ) \]

24708

\[ {} -y+y^{\prime \prime } = {\mathrm e}^{2 x} \]

24709

\[ {} -y+y^{\prime \prime } = 16 \,{\mathrm e}^{3 x} \]

24710

\[ {} -y+y^{\prime \prime } = \cos \left (4 x \right ) \]

24711

\[ {} y^{\prime \prime }+y^{\prime }+y = 6 \,{\mathrm e}^{x} \]

24712

\[ {} y^{\prime \prime }+y^{\prime }+y = {\mathrm e}^{-x} \]

24713

\[ {} y^{\prime \prime }+y^{\prime }+y = 4-{\mathrm e}^{2 x} \]

24714

\[ {} y-2 y^{\prime }+y^{\prime \prime } = {\mathrm e}^{-x} \]

24715

\[ {} y-2 y^{\prime }+y^{\prime \prime } = {\mathrm e}^{2 x} \]

24716

\[ {} y-2 y^{\prime }+y^{\prime \prime } = {\mathrm e}^{3 x} \]

24717

\[ {} 4 y^{\prime \prime }-y = {\mathrm e}^{x} \]

24718

\[ {} 4 y^{\prime \prime }-y = x \]

24719

\[ {} 4 y^{\prime \prime }-y = x +{\mathrm e}^{x} \]

24720

\[ {} y+2 y^{\prime }+y^{\prime \prime } = {\mathrm e}^{x} \]

24721

\[ {} y+2 y^{\prime }+y^{\prime \prime } = {\mathrm e}^{2 x} \]

24722

\[ {} y+2 y^{\prime }+y^{\prime \prime } = 7+{\mathrm e}^{x}+{\mathrm e}^{2 x} \]

24723

\[ {} y^{\prime \prime \prime }-y = {\mathrm e}^{2 x} \]

24724

\[ {} y^{\prime \prime \prime }-y = x^{2}+8 \]

24725

\[ {} y^{\prime \prime \prime }-y = {\mathrm e}^{-x} \]

24726

\[ {} y^{\prime \prime \prime \prime }+4 y = \cos \left (x \right ) \]

24727

\[ {} y^{\prime \prime \prime \prime }+4 y = \sin \left (x \right ) \]

24728

\[ {} y^{\prime \prime \prime \prime }+4 y = \sin \left (2 x \right ) \]

24729

\[ {} y^{\prime \prime }-6 y^{\prime }+9 y = {\mathrm e}^{3 x} \]

24730

\[ {} y-2 y^{\prime }+y^{\prime \prime } = {\mathrm e}^{x} \]

24731

\[ {} y^{\prime \prime }+4 y^{\prime }+4 y = 12 x \,{\mathrm e}^{-2 x} \]

24732

\[ {} y+2 y^{\prime }+y^{\prime \prime } = 3 x \,{\mathrm e}^{-x} \]

24733

\[ {} y^{\prime \prime \prime }-6 y^{\prime \prime }+12 y^{\prime }-8 y = 6 x \,{\mathrm e}^{2 x} \]

24734

\[ {} y^{\prime \prime \prime }+12 y^{\prime \prime }+48 y^{\prime }+64 y = 8 x \,{\mathrm e}^{-4 x} \]

24735

\[ {} y^{\prime \prime \prime }+9 y^{\prime \prime }+27 y^{\prime }+27 y = 15 x^{2} {\mathrm e}^{-3 x} \]

24736

\[ {} y^{\prime \prime \prime }-12 y^{\prime \prime }+48 y^{\prime }-64 y = 15 x^{2} {\mathrm e}^{4 x} \]

24737

\[ {} y^{\prime \prime \prime \prime }-6 y^{\prime \prime \prime }+9 y^{\prime \prime } = 16 \,{\mathrm e}^{2 x} \]

24738

\[ {} y^{\prime \prime \prime \prime }+6 y^{\prime \prime \prime }+9 y^{\prime \prime } = 9 \,{\mathrm e}^{-3 x} \]

24739

\[ {} y^{\prime \prime }-y^{\prime }-2 y = 18 x \,{\mathrm e}^{-x} \]

24740

\[ {} y^{\prime \prime }-y^{\prime }-2 y = 36 x \,{\mathrm e}^{2 x} \]

24741

\[ {} 4 y-4 y^{\prime }+y^{\prime \prime } = 20-3 x \,{\mathrm e}^{2 x} \]

24742

\[ {} 4 y-4 y^{\prime }+y^{\prime \prime } = 4-8 x +6 x \,{\mathrm e}^{2 x} \]

24743

\[ {} y^{\prime \prime }-9 y = 18 x -162 x \,{\mathrm e}^{2 x} \]

24744

\[ {} y^{\prime \prime }+4 y^{\prime }+4 y = 4 x -6 \,{\mathrm e}^{-2 x}+3 \,{\mathrm e}^{x} \]

24745

\[ {} y+2 y^{\prime }+y^{\prime \prime } = {\mathrm e}^{-x}+3 x \]

24746

\[ {} y^{\prime \prime }-4 y = 16 x \,{\mathrm e}^{-2 x}+8 x +4 \]

24747

\[ {} y^{\prime \prime }-4 y = 8 x \,{\mathrm e}^{2 x} \]

24748

\[ {} y^{\prime \prime }-9 y = -72 x \,{\mathrm e}^{-3 x} \]

24749

\[ {} y^{\prime }+2 y^{\prime \prime }+y^{\prime \prime \prime } = {\mathrm e}^{-x} \]

24750

\[ {} y^{\prime \prime \prime \prime }-4 y^{\prime \prime \prime }+4 y^{\prime \prime } = 2 \,{\mathrm e}^{2 x} \]

24751

\[ {} y+2 y^{\prime }+y^{\prime \prime } = 48 \,{\mathrm e}^{-x} \cos \left (4 x \right ) \]

24752

\[ {} y^{\prime \prime }+4 y^{\prime }+4 y = 18 \,{\mathrm e}^{-2 x} \cos \left (3 x \right ) \]

24753

\[ {} y-2 y^{\prime }+y^{\prime \prime } = {\mathrm e}^{x} \sec \left (x \right )^{2} \tan \left (x \right ) \]

24754

\[ {} y^{\prime \prime }+4 y^{\prime }+4 y = -\frac {{\mathrm e}^{-2 x}}{x^{2}} \]

24755

\[ {} y^{\prime \prime }-2 a y^{\prime }+a^{2} y = {\mathrm e}^{a x}+f^{\prime \prime }\left (x \right ) \]

24756

\[ {} y^{\prime \prime }+7 y^{\prime }+12 y = {\mathrm e}^{-3 x} \sec \left (x \right )^{2} \left (1+2 \tan \left (x \right )\right ) \]

24757

\[ {} -y+y^{\prime \prime } = {\mathrm e}^{2 x} \]

24758

\[ {} -y+y^{\prime \prime } = {\mathrm e}^{x} \]

24759

\[ {} y^{\prime \prime }+y = \sin \left (x \right ) \]

24760

\[ {} 4 y+y^{\prime \prime } = \cos \left (2 x \right ) \]

24761

\[ {} y^{\prime \prime }+9 y = {\mathrm e}^{2 x} \]

24762

\[ {} 4 y+y^{\prime \prime } = {\mathrm e}^{3 x} \]

24763

\[ {} 4 y^{\prime \prime }+y = {\mathrm e}^{-2 x} \]

24764

\[ {} y^{\prime \prime }-2 y^{\prime } = {\mathrm e}^{-x} \]

24765

\[ {} y^{\prime \prime \prime }-4 y^{\prime \prime }+4 y^{\prime } = {\mathrm e}^{2 x} \]

24766

\[ {} y^{\prime \prime \prime }+6 y^{\prime \prime }+9 y^{\prime } = {\mathrm e}^{-3 x} \]

24767

\[ {} 4 y+y^{\prime \prime } = \cos \left (3 x \right ) \]

24768

\[ {} y^{\prime \prime }+9 y = \cos \left (3 x \right ) \]

24769

\[ {} 4 y+y^{\prime \prime } = \sin \left (2 x \right ) \]

24770

\[ {} y^{\prime \prime }+36 y = \sin \left (6 x \right ) \]

24771

\[ {} y^{\prime \prime }+9 y = \sin \left (3 x \right ) \]

24772

\[ {} y^{\prime \prime }+36 y = \cos \left (6 x \right ) \]

24773

\[ {} y^{\prime \prime }+3 y^{\prime }-4 y = 12 \,{\mathrm e}^{2 x} \]

24774

\[ {} y^{\prime \prime }+3 y^{\prime }-4 y = 21 \,{\mathrm e}^{3 x} \]

24775

\[ {} y^{\prime \prime }+3 y^{\prime }-4 y = 15 \,{\mathrm e}^{x} \]

24776

\[ {} y^{\prime \prime }+3 y^{\prime }-4 y = 20 \,{\mathrm e}^{-4 x} \]

24777

\[ {} 2 y-3 y^{\prime }+y^{\prime \prime } = {\mathrm e}^{x}+{\mathrm e}^{2 x} \]

24778

\[ {} 4 y^{\prime \prime }-y = {\mathrm e}^{\frac {x}{2}}+12 \,{\mathrm e}^{x} \]

24779

\[ {} y^{\left (5\right )}-6 y^{\prime \prime \prime \prime }+12 y^{\prime \prime \prime }-8 y^{\prime \prime } = 48 \,{\mathrm e}^{2 x} \]

24780

\[ {} y^{\prime \prime \prime \prime }-18 y^{\prime \prime }+81 y = 36 \,{\mathrm e}^{3 x} \]

24781

\[ {} y^{\prime \prime }+16 y = 14 \cos \left (3 x \right ) \]

24782

\[ {} 4 y^{\prime \prime }+y = 33 \sin \left (3 x \right ) \]

24783

\[ {} y^{\prime \prime }+16 y = 24 \sin \left (4 x \right ) \]

24784

\[ {} y^{\prime \prime }+16 y = 48 \cos \left (4 x \right ) \]

24785

\[ {} y^{\prime \prime }+y = 12 \cos \left (2 x \right )-\sin \left (3 x \right ) \]

24786

\[ {} y^{\prime \prime }+y = \sin \left (3 x \right )+4 \cos \left (x \right ) \]

24787

\[ {} y^{\prime \prime }-2 y^{\prime }+5 y = \cos \left (2 x \right ) {\mathrm e}^{x} \]

24788

\[ {} 5 y+2 y^{\prime }+y^{\prime \prime } = \sin \left (2 x \right ) {\mathrm e}^{-x} \]

24789

\[ {} -y+y^{\prime \prime } = x^{3} \]

24790

\[ {} -y+y^{\prime \prime } = x^{4} \]

24791

\[ {} 4 y^{\prime \prime }+y = x^{3} \]

24792

\[ {} 4 y^{\prime \prime }+y = x^{4} \]

24793

\[ {} y-2 y^{\prime }+y^{\prime \prime } = x^{2} \]

24794

\[ {} y+2 y^{\prime }+y^{\prime \prime } = x^{2}+3 x +3 \]

24795

\[ {} y-2 y^{\prime }+y^{\prime \prime } = x^{3}-4 x^{2} \]

24796

\[ {} y+2 y^{\prime }+y^{\prime \prime } = x^{3}+6 x^{2} \]

24797

\[ {} y^{\prime \prime \prime }+4 y^{\prime } = 4 x^{3}+2 x \]

24798

\[ {} y^{\prime \prime \prime \prime }+4 y^{\prime \prime } = 12 x \]

24799

\[ {} y^{\prime \prime \prime \prime }+y^{\prime \prime } = 12 x -2 \]

24800

\[ {} y^{\prime \prime \prime \prime }-y^{\prime \prime } = 12 x -2 \]