Internal
problem
ID
[24735]
Book
:
A
short
course
in
Differential
Equations.
Earl
D.
Rainville.
Second
edition.
1958.
Macmillan
Publisher,
NY.
CAT
58-5010
Section
:
Chapter
10.
Nonhomogeneous
Equations:
Operational
methods.
Exercises
at
page
151
Problem
number
:
7
Date
solved
:
Thursday, October 02, 2025 at 10:47:32 PM
CAS
classification
:
[[_3rd_order, _linear, _nonhomogeneous]]
ode:=diff(diff(diff(y(x),x),x),x)+9*diff(diff(y(x),x),x)+27*diff(y(x),x)+27*y(x) = 15*x^2*exp(-3*x); dsolve(ode,y(x), singsol=all);
ode=D[y[x],{x,3}]+9*D[y[x],{x,2}]+27*D[y[x],{x,1}]+27*y[x]==15*x^2*Exp[-3*x]; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(-15*x**2*exp(-3*x) + 27*y(x) + 27*Derivative(y(x), x) + 9*Derivative(y(x), (x, 2)) + Derivative(y(x), (x, 3)),0) ics = {} dsolve(ode,func=y(x),ics=ics)