6.232 Problems 23101 to 23200

Table 6.463: Main lookup table sequentially arranged

#

ODE

Mathematica

Maple

Sympy

23101

\[ {} y^{\prime }-\frac {6 y}{x} = 7 x \]

23102

\[ {} y^{\prime }-\sin \left (x \right ) y = \sin \left (x \right ) \]

23103

\[ {} y^{\prime }+y \tan \left (x \right ) = \sec \left (x \right ) \]

23104

\[ {} \left ({\mathrm e}^{x}+1\right ) y^{\prime }+y \,{\mathrm e}^{x} = {\mathrm e}^{x} \]

23105

\[ {} \left (x^{2}+1\right ) y^{\prime }+x y = \left (x^{2}+1\right )^{{3}/{2}} \]

23106

\[ {} p^{\prime } = 15-20 p \]

23107

\[ {} n^{\prime } = k n-b t \]

23108

\[ {} x y^{\prime }-2 y \cos \left (x \right ) = {\mathrm e}^{x} \sin \left (x \right )^{3} \]

23109

\[ {} y^{\prime } \sin \left (x \right )+2 y \cos \left (x \right ) = 4 \cos \left (x \right )^{3} \]

23110

\[ {} y^{\prime } = \frac {x y+a^{2}}{a^{2}-x^{2}} \]

23111

\[ {} y^{\prime }+\frac {y \ln \left (x \right )}{x} = 2 \]

23112

\[ {} y^{\prime }+4 y = {\mathrm e}^{k x} \]

23113

\[ {} \cos \left (x \right ) y^{\prime }+\sin \left (x \right ) y = x \]

23114

\[ {} v^{\prime } = 60 t -4 v \]

23115

\[ {} y^{\prime \prime }+3 y^{\prime }+2 y = 0 \]

23116

\[ {} y^{\prime \prime }-5 y^{\prime }+4 y = 0 \]

23117

\[ {} y^{\prime \prime }-4 y = 0 \]

23118

\[ {} y^{\prime \prime }+7 y^{\prime }-8 y = 0 \]

23119

\[ {} 3 x^{\prime \prime }+19 x^{\prime }-14 x = 0 \]

23120

\[ {} 8 y^{\prime \prime }-10 y^{\prime }+3 y = 0 \]

23121

\[ {} y^{\prime \prime }-9 y^{\prime }+18 y = 0 \]

23122

\[ {} y^{\prime \prime }-2 y^{\prime }-63 y = 0 \]

23123

\[ {} 20 y^{\prime \prime }-3 y^{\prime }-2 y = 0 \]

23124

\[ {} 35 y^{\prime \prime }-29 y^{\prime }+6 y = 0 \]

23125

\[ {} 3 y^{\prime \prime }+2 y^{\prime }-2 y = 0 \]

23126

\[ {} 12 x^{\prime \prime }-25 x^{\prime }+12 x = 0 \]

23127

\[ {} 38 x^{\prime \prime }+10 x^{\prime }-3 x = 0 \]

23128

\[ {} 2 y^{\prime \prime }-15 y^{\prime }+27 y = 0 \]

23129

\[ {} y^{\prime \prime }-3 y = 0 \]

23130

\[ {} y^{\prime \prime }-8 y = 0 \]

23131

\[ {} 4 y^{\prime \prime }-7 y = 0 \]

23132

\[ {} z^{\prime \prime }-3 z^{\prime }+z = 0 \]

23133

\[ {} y^{\prime \prime }+8 y^{\prime }+4 y = 0 \]

23134

\[ {} x^{\prime \prime }+36 x = 0 \]

23135

\[ {} y^{\prime \prime }+3 y = 0 \]

23136

\[ {} z^{\prime \prime }+g z = 0 \]

23137

\[ {} 9 y^{\prime \prime }+49 y = 0 \]

23138

\[ {} y^{\prime \prime }+3 y^{\prime }+3 y = 0 \]

23139

\[ {} x^{\prime \prime }+2 x^{\prime }+4 x = 0 \]

23140

\[ {} z^{\prime \prime }-7 z^{\prime }-13 z = 0 \]

23141

\[ {} y^{\prime \prime }-3 y^{\prime }+4 y = 0 \]

23142

\[ {} y^{\prime \prime }-5 y^{\prime }+8 y = 0 \]

23143

\[ {} 5 y+4 y^{\prime }+y^{\prime \prime } = 0 \]

23144

\[ {} 4 y-4 y^{\prime }+y^{\prime \prime } = 0 \]

23145

\[ {} x^{\prime \prime }-2 x^{\prime }+x = 0 \]

23146

\[ {} z^{\prime \prime }+6 z^{\prime }+9 z = 0 \]

23147

\[ {} z^{\prime \prime }+8 z^{\prime }+16 z = 0 \]

23148

\[ {} y^{\prime \prime }-9 y = 5 \]

23149

\[ {} y^{\prime \prime }-3 y = {\mathrm e}^{x} \]

23150

\[ {} x^{\prime \prime }-3 x^{\prime }-4 x = 3 \cos \left (2 t \right ) \]

23151

\[ {} z^{\prime \prime }-3 z^{\prime }+2 z = 4 \sin \left (3 t \right ) \]

23152

\[ {} x^{\prime \prime }-6 x^{\prime }-7 x = 4 z -7 \]

23153

\[ {} y^{\prime \prime }+3 y^{\prime }+5 y = 4 \,{\mathrm e}^{3 t} \]

23154

\[ {} x^{\prime \prime }-2 x^{\prime }+5 x = 3 \cos \left (2 t \right ) \]

23155

\[ {} y^{\prime \prime }+5 y^{\prime }+8 y = 4 \sin \left (5 x \right ) \]

23156

\[ {} x^{\prime \prime }+9 x^{\prime }+8 x = \sin \left (5 t \right ) \]

23157

\[ {} x^{\prime \prime }-9 x^{\prime }-10 x = \cos \left (4 t \right ) \]

23158

\[ {} y^{\prime \prime }-9 y^{\prime }+14 y = {\mathrm e}^{2 x} \]

23159

\[ {} z^{\prime \prime }-4 z = \sin \left (2 x \right ) \]

23160

\[ {} y^{\prime \prime }+2 y^{\prime }-15 y = {\mathrm e}^{4 x} \]

23161

\[ {} y^{\prime \prime } = {y^{\prime }}^{2} \]

23162

\[ {} \left (1-y^{2}\right ) y^{\prime \prime } = y^{\prime } \]

23163

\[ {} T^{\prime \prime }+{T^{\prime }}^{3} = 0 \]

23164

\[ {} y^{\prime \prime } {y^{\prime }}^{2}-x^{2} = 0 \]

23165

\[ {} x^{2} y^{\prime \prime } = {y^{\prime }}^{2} \]

23166

\[ {} x^{\prime \prime }+3 x^{\prime } = {\mathrm e}^{-3 t} \]

23167

\[ {} y^{\prime \prime }-4 y^{\prime } = 7 \]

23168

\[ {} z^{\prime \prime }+2 z^{\prime } = 3 \sin \left (x \right ) \]

23169

\[ {} s^{\prime \prime } = 5 t^{2}-7 t \]

23170

\[ {} s^{\prime \prime } = -9 s \]

23171

\[ {} r^{\prime } = -a \sin \left (\theta \right ) \]

23172

\[ {} \frac {r^{\prime }}{r} = \tan \left (\theta \right ) \]

23173

\[ {} \left (1+\cos \left (\theta \right )\right ) r^{\prime } = -r \sin \left (\theta \right ) \]

23174

\[ {} \cot \left (\theta \right ) r^{\prime } = r+b \]

23175

\[ {} r r^{\prime } = a \]

23176

\[ {} r^{\prime } \left (1+\frac {\cos \left (\theta \right )}{2}\right )-r \sin \left (\theta \right ) = 0 \]

23177

\[ {} \sin \left (\theta \right )^{2} r^{\prime } = -b \cos \left (\theta \right ) \]

23178

\[ {} r^{\prime } = 0 \]

23179

\[ {} r^{\prime } = c \]

23180

\[ {} r^{\prime } \left (\sin \left (\theta \right )-m \cos \left (\theta \right )\right )+r \left (\cos \left (\theta \right )+m \sin \left (\theta \right )\right ) = 0 \]

23181

\[ {} 6 y-5 y^{\prime }+y^{\prime \prime } = {\mathrm e}^{x} \]

23182

\[ {} -y+y^{\prime \prime } = \sin \left (x \right ) \]

23183

\[ {} y^{\prime \prime }-5 y^{\prime }+4 y = x^{2} \]

23184

\[ {} 4 y-4 y^{\prime }+y^{\prime \prime } = {\mathrm e}^{3 x} \]

23185

\[ {} y^{\prime \prime }-11 y^{\prime }+30 y = {\mathrm e}^{5 x} \]

23186

\[ {} y+2 y^{\prime }+y^{\prime \prime } = \cos \left (x \right ) \]

23187

\[ {} 2 y^{\prime \prime }-3 y^{\prime }-5 y = 2 \sin \left (2 x \right )+3 \cos \left (2 x \right ) \]

23188

\[ {} y^{\prime \prime }-7 y^{\prime }+2 y = {\mathrm e}^{2 x} \]

23189

\[ {} 2 y^{\prime \prime }-4 y^{\prime }-y = 7 \,{\mathrm e}^{5 x} \]

23190

\[ {} y-2 y^{\prime }+y^{\prime \prime } = \sin \left (x \right ) \]

23191

\[ {} y^{\prime \prime }+2 y = 7 \cos \left (3 x \right ) \]

23192

\[ {} y^{\prime \prime }-2 y^{\prime }-y = 2 \cos \left (3 x \right )-3 \sin \left (2 x \right ) \]

23193

\[ {} y-2 y^{\prime }+y^{\prime \prime } = 5 x^{3} \]

23194

\[ {} y^{\prime \prime }+y^{\prime }+y = 2 x^{3}+7 x^{2}-x \]

23195

\[ {} y^{\prime \prime }+2 y^{\prime }+2 y = 5 \sin \left (x \right ) \]

23196

\[ {} x^{\prime \prime }-3 x^{\prime }+2 x = 5 \cos \left (t \right ) \]

23197

\[ {} y^{\prime \prime }+\frac {y^{\prime }}{x}+\left (1-\frac {1}{4 x^{2}}\right ) y = \sqrt {x} \]

23198

\[ {} y^{\prime \prime }+3 y^{\prime }+2 y = x \]

23199

\[ {} y^{\prime \prime }+4 y^{\prime }+4 y = 8 \sin \left (2 x \right ) \]

23200

\[ {} y^{\prime \prime }+3 y^{\prime }+2 y = 1+x^{2}+{\mathrm e}^{-2 x} \]