| # | ODE | Mathematica | Maple | Sympy |
| \[
{} y^{\prime }-\frac {6 y}{x} = 7 x
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime }-\sin \left (x \right ) y = \sin \left (x \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime }+y \tan \left (x \right ) = \sec \left (x \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \left ({\mathrm e}^{x}+1\right ) y^{\prime }+y \,{\mathrm e}^{x} = {\mathrm e}^{x}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \left (x^{2}+1\right ) y^{\prime }+x y = \left (x^{2}+1\right )^{{3}/{2}}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} p^{\prime } = 15-20 p
\]
|
✓ |
✓ |
✓ |
|
| \[
{} n^{\prime } = k n-b t
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x y^{\prime }-2 y \cos \left (x \right ) = {\mathrm e}^{x} \sin \left (x \right )^{3}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime } \sin \left (x \right )+2 y \cos \left (x \right ) = 4 \cos \left (x \right )^{3}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = \frac {x y+a^{2}}{a^{2}-x^{2}}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime }+\frac {y \ln \left (x \right )}{x} = 2
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime }+4 y = {\mathrm e}^{k x}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \cos \left (x \right ) y^{\prime }+\sin \left (x \right ) y = x
\]
|
✓ |
✓ |
✓ |
|
| \[
{} v^{\prime } = 60 t -4 v
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+3 y^{\prime }+2 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }-5 y^{\prime }+4 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }-4 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+7 y^{\prime }-8 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 3 x^{\prime \prime }+19 x^{\prime }-14 x = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 8 y^{\prime \prime }-10 y^{\prime }+3 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }-9 y^{\prime }+18 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }-2 y^{\prime }-63 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 20 y^{\prime \prime }-3 y^{\prime }-2 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 35 y^{\prime \prime }-29 y^{\prime }+6 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 3 y^{\prime \prime }+2 y^{\prime }-2 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 12 x^{\prime \prime }-25 x^{\prime }+12 x = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 38 x^{\prime \prime }+10 x^{\prime }-3 x = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 2 y^{\prime \prime }-15 y^{\prime }+27 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }-3 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }-8 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 4 y^{\prime \prime }-7 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} z^{\prime \prime }-3 z^{\prime }+z = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+8 y^{\prime }+4 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{\prime \prime }+36 x = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+3 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} z^{\prime \prime }+g z = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 9 y^{\prime \prime }+49 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+3 y^{\prime }+3 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{\prime \prime }+2 x^{\prime }+4 x = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} z^{\prime \prime }-7 z^{\prime }-13 z = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }-3 y^{\prime }+4 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }-5 y^{\prime }+8 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 5 y+4 y^{\prime }+y^{\prime \prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 4 y-4 y^{\prime }+y^{\prime \prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{\prime \prime }-2 x^{\prime }+x = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} z^{\prime \prime }+6 z^{\prime }+9 z = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} z^{\prime \prime }+8 z^{\prime }+16 z = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }-9 y = 5
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }-3 y = {\mathrm e}^{x}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{\prime \prime }-3 x^{\prime }-4 x = 3 \cos \left (2 t \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} z^{\prime \prime }-3 z^{\prime }+2 z = 4 \sin \left (3 t \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{\prime \prime }-6 x^{\prime }-7 x = 4 z -7
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+3 y^{\prime }+5 y = 4 \,{\mathrm e}^{3 t}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{\prime \prime }-2 x^{\prime }+5 x = 3 \cos \left (2 t \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+5 y^{\prime }+8 y = 4 \sin \left (5 x \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{\prime \prime }+9 x^{\prime }+8 x = \sin \left (5 t \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{\prime \prime }-9 x^{\prime }-10 x = \cos \left (4 t \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }-9 y^{\prime }+14 y = {\mathrm e}^{2 x}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} z^{\prime \prime }-4 z = \sin \left (2 x \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+2 y^{\prime }-15 y = {\mathrm e}^{4 x}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime } = {y^{\prime }}^{2}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \left (1-y^{2}\right ) y^{\prime \prime } = y^{\prime }
\]
|
✓ |
✓ |
✗ |
|
| \[
{} T^{\prime \prime }+{T^{\prime }}^{3} = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime } {y^{\prime }}^{2}-x^{2} = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} x^{2} y^{\prime \prime } = {y^{\prime }}^{2}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{\prime \prime }+3 x^{\prime } = {\mathrm e}^{-3 t}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }-4 y^{\prime } = 7
\]
|
✓ |
✓ |
✓ |
|
| \[
{} z^{\prime \prime }+2 z^{\prime } = 3 \sin \left (x \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} s^{\prime \prime } = 5 t^{2}-7 t
\]
|
✓ |
✓ |
✓ |
|
| \[
{} s^{\prime \prime } = -9 s
\]
|
✓ |
✓ |
✓ |
|
| \[
{} r^{\prime } = -a \sin \left (\theta \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \frac {r^{\prime }}{r} = \tan \left (\theta \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \left (1+\cos \left (\theta \right )\right ) r^{\prime } = -r \sin \left (\theta \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \cot \left (\theta \right ) r^{\prime } = r+b
\]
|
✓ |
✓ |
✓ |
|
| \[
{} r r^{\prime } = a
\]
|
✓ |
✗ |
✓ |
|
| \[
{} r^{\prime } \left (1+\frac {\cos \left (\theta \right )}{2}\right )-r \sin \left (\theta \right ) = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \sin \left (\theta \right )^{2} r^{\prime } = -b \cos \left (\theta \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} r^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} r^{\prime } = c
\]
|
✓ |
✓ |
✓ |
|
| \[
{} r^{\prime } \left (\sin \left (\theta \right )-m \cos \left (\theta \right )\right )+r \left (\cos \left (\theta \right )+m \sin \left (\theta \right )\right ) = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 6 y-5 y^{\prime }+y^{\prime \prime } = {\mathrm e}^{x}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} -y+y^{\prime \prime } = \sin \left (x \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }-5 y^{\prime }+4 y = x^{2}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 4 y-4 y^{\prime }+y^{\prime \prime } = {\mathrm e}^{3 x}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }-11 y^{\prime }+30 y = {\mathrm e}^{5 x}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y+2 y^{\prime }+y^{\prime \prime } = \cos \left (x \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 2 y^{\prime \prime }-3 y^{\prime }-5 y = 2 \sin \left (2 x \right )+3 \cos \left (2 x \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }-7 y^{\prime }+2 y = {\mathrm e}^{2 x}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 2 y^{\prime \prime }-4 y^{\prime }-y = 7 \,{\mathrm e}^{5 x}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y-2 y^{\prime }+y^{\prime \prime } = \sin \left (x \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+2 y = 7 \cos \left (3 x \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }-2 y^{\prime }-y = 2 \cos \left (3 x \right )-3 \sin \left (2 x \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y-2 y^{\prime }+y^{\prime \prime } = 5 x^{3}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+y^{\prime }+y = 2 x^{3}+7 x^{2}-x
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+2 y^{\prime }+2 y = 5 \sin \left (x \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{\prime \prime }-3 x^{\prime }+2 x = 5 \cos \left (t \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+\frac {y^{\prime }}{x}+\left (1-\frac {1}{4 x^{2}}\right ) y = \sqrt {x}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime \prime }+3 y^{\prime }+2 y = x
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+4 y^{\prime }+4 y = 8 \sin \left (2 x \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+3 y^{\prime }+2 y = 1+x^{2}+{\mathrm e}^{-2 x}
\]
|
✓ |
✓ |
✓ |
|