86.10.1 problem 1

Internal problem ID [23181]
Book : An introduction to Differential Equations. By Howard Frederick Cleaves. 1969. Oliver and Boyd publisher. ISBN 0050015044
Section : Chapter 9. The operational method. Exercise 9b at page 134
Problem number : 1
Date solved : Thursday, October 02, 2025 at 09:24:06 PM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

\begin{align*} 6 y-5 y^{\prime }+y^{\prime \prime }&={\mathrm e}^{x} \end{align*}
Maple. Time used: 0.003 (sec). Leaf size: 21
ode:=diff(diff(y(x),x),x)-5*diff(y(x),x)+6*y(x) = exp(x); 
dsolve(ode,y(x), singsol=all);
 
\[ y = {\mathrm e}^{2 x} c_2 +{\mathrm e}^{3 x} c_1 +\frac {{\mathrm e}^{x}}{2} \]
Mathematica. Time used: 0.026 (sec). Leaf size: 29
ode=D[y[x],{x,2}]-5*D[y[x],x]+6*y[x]==Exp[x]; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to \frac {e^x}{2}+c_1 e^{2 x}+c_2 e^{3 x} \end{align*}
Sympy. Time used: 0.119 (sec). Leaf size: 20
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(6*y(x) - exp(x) - 5*Derivative(y(x), x) + Derivative(y(x), (x, 2)),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = \left (C_{1} e^{x} + C_{2} e^{2 x} + \frac {1}{2}\right ) e^{x} \]