| # | ODE | Mathematica | Maple | Sympy |
| \[
{} [x^{\prime }\left (t \right ) = x \left (t \right )^{2}, y^{\prime }\left (t \right ) = 2 y \left (t \right )^{2}-x \left (t \right ) y \left (t \right )]
\]
|
✓ |
✓ |
✓ |
|
| \[
{} [x^{\prime }\left (t \right ) = -x \left (t \right )+y \left (t \right )^{2}, y^{\prime }\left (t \right ) = x \left (t \right )^{2}-y \left (t \right )]
\]
|
✗ |
✓ |
✗ |
|
| \[
{} x^{\prime \prime } = 4 x^{3}-4 x
\]
|
✓ |
✓ |
✗ |
|
| \[
{} x^{\prime \prime }+\sin \left (x\right ) = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} x^{\prime \prime } = x^{2}-4 x+\lambda
\]
|
✓ |
✓ |
✗ |
|
| \[
{} x y^{\prime } = 2 y+x
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y y^{\prime }+x = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+y^{\prime } = 6 y+5 \,{\mathrm e}^{2 x}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime }+y = 2 \,{\mathrm e}^{-x}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = -\frac {x}{4 y}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = \frac {x}{y}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 3 x^{2}-2 y^{3} y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 1+y+y^{2}+x \left (x^{2}-4\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} r^{\prime } \sin \left (t \right )+r \cos \left (t \right ) = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{3} y^{\prime }-x^{3} = 1
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y y^{\prime }+x = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} r^{\prime } = r \tan \left (t \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} {\mathrm e}^{x} \sec \left (y\right )+\left ({\mathrm e}^{x}+1\right ) \sec \left (y\right ) \tan \left (y\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} \left (x -y\right ) y^{\prime } = y-x
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y = x y^{\prime }-\sqrt {x^{2}+y^{2}}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{3}-y^{3}+x y^{2} y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = \frac {y}{x}-\csc \left (\frac {y}{x}\right )^{2}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} 3 x^{2}+2 x y+4 y^{2}+\left (20 x^{2}+6 x y+y^{2}\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \left (x +y\right ) y^{\prime } = y
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{2}+2 x y-2 y^{2}+\left (y^{2}+2 x y-2 x^{2}\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} a x -b y+\left (b x -a y\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} 2 x^{2}+5 x y^{2}+\left (5 x^{2} y-2 y^{4}\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} x^{2} a +2 b x y+c y^{2}+\left (b \,x^{2}+2 c x y+y^{2}\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} \sec \left (x \right )^{2} \tan \left (y\right )+\sec \left (y\right )^{2} \tan \left (x \right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{2}+y \,{\mathrm e}^{2 y}+\left (2 x y+x \right ) {\mathrm e}^{2 y} y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \sin \left (x \right )+\sin \left (y\right )+\left (x \cos \left (y\right )+\cos \left (y\right )\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 4 x -2 y+3+\left (5 y-2 x +7\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 2 x \sin \left (y\right )+2 x +3 y \cos \left (x \right )+\left (x^{2} \cos \left (y\right )+3 \sin \left (x \right )\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y \,{\mathrm e}^{2 x}-3 x \,{\mathrm e}^{2 y}+\left (\frac {{\mathrm e}^{2 x}}{2}-3 x^{2} {\mathrm e}^{2 y}-{\mathrm e}^{y}\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} x y^{\prime }-y = x^{2} y y^{\prime }
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{3} y^{\prime }-x^{2} y = x^{5} y
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \left (x^{2}+y^{2}\right ) \left (x y^{\prime }+y\right ) = x y \left (x y^{\prime }-y\right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 3 y+2 x y^{\prime }+4 x y^{2}+3 x^{2} y y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x y^{\prime }-y = x^{2} \sqrt {x^{2}-y^{2}}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} x y^{\prime }+y = 3 x^{2}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{2} y^{\prime }-x y = x^{2}-y^{2}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y = \left (2 x^{2} y^{3}-x \right ) y^{\prime }
\]
|
✗ |
✗ |
✗ |
|
| \[
{} y^{\prime }+4 y = x^{2}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime }+\sin \left (x \right ) y = 2 x \,{\mathrm e}^{\cos \left (x \right )}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x y+x^{2} y^{\prime } = 8 x^{2} \cos \left (x \right )^{2}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 2 y+y^{\prime } = \sin \left (3 x \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 1-x y^{\prime } = \ln \left (y\right ) y^{\prime }
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 2-x -y+\left (x +y+3\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 2+3 x -5 y+7 y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 4 x +3 y+2+\left (5 x +4 y+1\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x -y-3+\left (3 x -3 y+1\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 2 x -y-1+\left (3 x +2 y-5\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x y \left (x y^{\prime }+y\right ) = 4 x^{3}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{3} \left (y y^{\prime }+x \right ) = \left (x^{2}+y^{2}\right )^{3} y^{\prime }
\]
|
✗ |
✗ |
✗ |
|
| \[
{} \left (1+{\mathrm e}^{-\frac {y}{x}}\right ) y^{\prime }+1-\frac {y}{x} = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y y^{\prime }+y^{2} \tan \left (x \right ) = \cos \left (x \right )^{2}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x y^{\prime }-y = y^{3}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime }+3 x^{2} y = 3 x^{2}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 4 x^{2} y^{2} y^{\prime }-3 x y^{3} = x^{2} y^{3}+2 x^{2} y^{\prime }
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \sin \left (x \right )+\cos \left (y\right )+\cos \left (x \right )-y^{\prime } \sin \left (y\right ) = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x y^{\prime }+y = y^{2} x^{3} \sin \left (x \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} R q^{\prime }+\frac {q}{c} = E
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \left (x^{2} y^{2}-x y-2\right ) x y^{\prime }+\left (x^{2} y^{2}-1\right ) y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 3 x^{2}-2 x y+\left (4 y^{3}-x^{2}\right ) y^{\prime } = 0
\]
|
✗ |
✓ |
✗ |
|
| \[
{} 3 x^{2}+2 x y-2 y^{2}+\left (2 x^{2}+6 x y+y^{2}\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 2 x -y+1+\left (x -2 y-1\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} 3 x +3 y-2+\left (2 x +2 y+1\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} a x y-b +\left (c x y-d \right ) x y^{\prime } = 0
\]
|
✗ |
✗ |
✗ |
|
| \[
{} {y^{\prime }}^{2}-3 = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} {y^{\prime }}^{2}-4 y^{\prime }+2 = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x y^{2} {y^{\prime }}^{2}+\left (x^{3}+x y^{2}-y^{3}\right ) y^{\prime }+x^{3}-y^{3} = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} {y^{\prime }}^{2}+x y^{\prime }-y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 2 {y^{\prime }}^{3}+3 {y^{\prime }}^{2} = x +y
\]
|
✗ |
✓ |
✗ |
|
| \[
{} 2 a \,x^{3} y-a \,x^{2} y^{\prime }+c {y^{\prime }}^{3} = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{2}-2 y y^{\prime } x +x^{2} {y^{\prime }}^{2}-{y^{\prime }}^{3} = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} x +y {y^{\prime }}^{2} = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 2 x +y y^{\prime } \left (4 {y^{\prime }}^{2}+6\right ) = 0
\]
|
✗ |
✓ |
✗ |
|
| \[
{} 2 {y^{\prime }}^{2}+y y^{\prime }-y^{4} = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y = 4 x {y^{\prime }}^{2}+2 x y^{\prime }
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \left (-2 x y+x^{2}\right ) {y^{\prime }}^{2}-\left (3 x^{2}+2 y\right ) \left (x -2 y\right ) y^{\prime }+6 x y \left (x -2 y\right ) = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} {y^{\prime }}^{2}+y = x y^{\prime }+1
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y y^{\prime } = -x {y^{\prime }}^{2}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \left (y-x y^{\prime }\right )^{2} = y^{\prime }
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y-{y^{\prime }}^{2} = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x -x {y^{\prime }}^{2} = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} {y^{\prime }}^{3}+y {y^{\prime }}^{2}-x^{2} y^{\prime }-x^{2} y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y = x y^{\prime }+\ln \left (y^{\prime }\right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x {y^{\prime }}^{2} = y
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }-12 y^{\prime }+35 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }-2 y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 9 y^{\prime \prime }-30 y^{\prime }+25 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 3 y^{\prime \prime }-4 y^{\prime }+2 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime \prime }-6 y^{\prime \prime \prime }+7 y^{\prime \prime }+6 y^{\prime }-8 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime }-2 y^{\prime \prime }+3 y^{\prime }-6 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime \prime }-4 y^{\prime \prime \prime }+5 y^{\prime \prime }-4 y^{\prime }+4 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime \prime }-8 y^{\prime \prime \prime }+42 y^{\prime \prime }-104 y^{\prime }+169 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime }-3 y^{\prime \prime }+3 y^{\prime }-y = 2 x^{2}-3 x -17
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }-2 y^{\prime }-3 y+8 \,{\mathrm e}^{-x}+3 x = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 4 y+y^{\prime \prime } = 2 \tan \left (x \right )
\]
|
✓ |
✓ |
✓ |
|