83.11.7 problem 7

Internal problem ID [21996]
Book : Differential Equations By Kaj L. Nielsen. Second edition 1966. Barnes and nobel. 66-28306
Section : Chapter VI. Linear equations with constant coefficients. Ex. XIII at page 106
Problem number : 7
Date solved : Thursday, October 02, 2025 at 08:21:31 PM
CAS classification : [[_high_order, _missing_x]]

\begin{align*} y^{\prime \prime \prime \prime }-4 y^{\prime \prime \prime }+5 y^{\prime \prime }-4 y^{\prime }+4 y&=0 \end{align*}
Maple. Time used: 0.001 (sec). Leaf size: 23
ode:=diff(diff(diff(diff(y(x),x),x),x),x)-4*diff(diff(diff(y(x),x),x),x)+5*diff(diff(y(x),x),x)-4*diff(y(x),x)+4*y(x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ y = \left (c_2 x +c_1 \right ) {\mathrm e}^{2 x}+c_3 \sin \left (x \right )+c_4 \cos \left (x \right ) \]
Mathematica. Time used: 0.002 (sec). Leaf size: 29
ode=D[y[x],{x,4}]-4*D[y[x],{x,3}]+5*D[y[x],{x,2}]-4*D[y[x],x]+4*y[x]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to e^{2 x} (c_4 x+c_3)+c_1 \cos (x)+c_2 \sin (x) \end{align*}
Sympy. Time used: 0.115 (sec). Leaf size: 22
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(4*y(x) - 4*Derivative(y(x), x) + 5*Derivative(y(x), (x, 2)) - 4*Derivative(y(x), (x, 3)) + Derivative(y(x), (x, 4)),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = C_{3} \sin {\left (x \right )} + C_{4} \cos {\left (x \right )} + \left (C_{1} + C_{2} x\right ) e^{2 x} \]