6.158 Problems 15701 to 15800

Table 6.315: Main lookup table sequentially arranged

#

ODE

Mathematica

Maple

Sympy

15701

\[ {} y^{\prime } = x +x y \]

15702

\[ {} x \,{\mathrm e}^{y}+y^{\prime } = 0 \]

15703

\[ {} y-x^{2} y^{\prime } = 0 \]

15704

\[ {} 2 y y^{\prime } = 1 \]

15705

\[ {} 2 y y^{\prime } x +y^{2} = -1 \]

15706

\[ {} y^{\prime } = \frac {1-x y}{x^{2}} \]

15707

\[ {} y^{\prime } = -\frac {y \left (y+2 x \right )}{x \left (2 y+x \right )} \]

15708

\[ {} y^{\prime } = \frac {y^{2}}{1-x y} \]

15709

\[ {} y^{\prime } = 4 y+1 \]

15710

\[ {} y^{\prime } = 2+x y \]

15711

\[ {} y^{\prime } = \frac {y}{x} \]

15712

\[ {} y^{\prime } = \frac {y}{x -1}+x^{2} \]

15713

\[ {} y^{\prime } = \frac {y}{x}+\sin \left (x^{2}\right ) \]

15714

\[ {} y^{\prime } = \frac {2 y}{x}+{\mathrm e}^{x} \]

15715

\[ {} y^{\prime } = y \cot \left (x \right )+\sin \left (x \right ) \]

15716

\[ {} x -y y^{\prime } = 0 \]

15717

\[ {} y-x y^{\prime } = 0 \]

15718

\[ {} x y^{\prime }+x^{2}-y = 0 \]

15719

\[ {} x y \left (1-y\right )-2 y^{\prime } = 0 \]

15720

\[ {} x \left (1-y^{3}\right )-3 y^{2} y^{\prime } = 0 \]

15721

\[ {} \left (2 x -1\right ) y+x \left (1+x \right ) y^{\prime } = 0 \]

15722

\[ {} y^{\prime } = \frac {1}{x -1} \]

15723

\[ {} y^{\prime } = x +y \]

15724

\[ {} y^{\prime } = \frac {y}{x} \]

15725

\[ {} y^{\prime } = \frac {y}{x} \]

15726

\[ {} y^{\prime } = \frac {y}{-x^{2}+1}+\sqrt {x} \]

15727

\[ {} y^{\prime } = \frac {y}{-x^{2}+1}+\sqrt {x} \]

15728

\[ {} y^{\prime } = \frac {y}{-x^{2}+1}+\sqrt {x} \]

15729

\[ {} y^{\prime } = y^{2} \]

15730

\[ {} y^{\prime } = y^{2} \]

15731

\[ {} y^{\prime } = y^{2} \]

15732

\[ {} y^{\prime } = y^{3} \]

15733

\[ {} y^{\prime } = y^{3} \]

15734

\[ {} y^{\prime } = y^{3} \]

15735

\[ {} y^{\prime } = -\frac {3 x^{2}}{2 y} \]

15736

\[ {} y^{\prime } = -\frac {3 x^{2}}{2 y} \]

15737

\[ {} y^{\prime } = -\frac {3 x^{2}}{2 y} \]

15738

\[ {} y^{\prime } = -\frac {3 x^{2}}{2 y} \]

15739

\[ {} y^{\prime } = \frac {\sqrt {y}}{x} \]

15740

\[ {} y^{\prime } = \frac {\sqrt {y}}{x} \]

15741

\[ {} y^{\prime } = \frac {\sqrt {y}}{x} \]

15742

\[ {} y^{\prime } = \frac {\sqrt {y}}{x} \]

15743

\[ {} y^{\prime } = 3 x y^{{1}/{3}} \]

15744

\[ {} y^{\prime } = 3 x y^{{1}/{3}} \]

15745

\[ {} y^{\prime } = 3 x y^{{1}/{3}} \]

15746

\[ {} y^{\prime } = 3 x y^{{1}/{3}} \]

15747

\[ {} y^{\prime } = 3 x y^{{1}/{3}} \]

15748

\[ {} y^{\prime } = \sqrt {\left (y+2\right ) \left (y-1\right )} \]

15749

\[ {} y^{\prime } = \sqrt {\left (y+2\right ) \left (y-1\right )} \]

15750

\[ {} y^{\prime } = \sqrt {\left (y+2\right ) \left (y-1\right )} \]

15751

\[ {} y^{\prime } = \frac {y}{y-x} \]

15752

\[ {} y^{\prime } = \frac {y}{y-x} \]

15753

\[ {} y^{\prime } = \frac {y}{y-x} \]

15754

\[ {} y^{\prime } = \frac {y}{y-x} \]

15755

\[ {} y^{\prime } = \frac {x y}{x^{2}+y^{2}} \]

15756

\[ {} y^{\prime } = \frac {x y}{x^{2}+y^{2}} \]

15757

\[ {} y^{\prime } = \frac {x y}{x^{2}+y^{2}} \]

15758

\[ {} y^{\prime } = x \sqrt {1-y^{2}} \]

15759

\[ {} y^{\prime } = x \sqrt {1-y^{2}} \]

15760

\[ {} y^{\prime } = x \sqrt {1-y^{2}} \]

15761

\[ {} y^{\prime } = x \sqrt {1-y^{2}} \]

15762

\[ {} y^{\prime } = -\frac {x}{2}+\frac {\sqrt {x^{2}+4 y}}{2} \]

15763

\[ {} y^{\prime } = -\frac {x}{2}+\frac {\sqrt {x^{2}+4 y}}{2} \]

15764

\[ {} y^{\prime } = -\frac {x}{2}+\frac {\sqrt {x^{2}+4 y}}{2} \]

15765

\[ {} y^{\prime } = -\frac {x}{2}+\frac {\sqrt {x^{2}+4 y}}{2} \]

15766

\[ {} y^{\prime } = -\frac {x}{2}+\frac {\sqrt {x^{2}+4 y}}{2} \]

15767

\[ {} 3 y^{\prime \prime }-2 y^{\prime }+4 y = x \]

15768

\[ {} x y^{\prime \prime \prime }+x y^{\prime } = 4 \]

15769

\[ {} x \left (x -3\right ) y^{\prime \prime }+3 y^{\prime } = x^{2} \]

15770

\[ {} x \left (x -3\right ) y^{\prime \prime }+3 y^{\prime } = x^{2} \]

15771

\[ {} \sqrt {1-x}\, y^{\prime \prime }-4 y = \sin \left (x \right ) \]

15772

\[ {} \left (x^{2}-4\right ) y^{\prime \prime }+y \ln \left (x \right ) = x \,{\mathrm e}^{x} \]

15773

\[ {} -y+y^{\prime \prime } = 0 \]

15774

\[ {} y^{\prime \prime }+y = 0 \]

15775

\[ {} x^{2} y^{\prime \prime }+2 x y^{\prime }-2 y = 0 \]

15776

\[ {} 2 y y^{\prime \prime }-{y^{\prime }}^{2} = 0 \]

15777

\[ {} -y+y^{\prime \prime } = 0 \]

15778

\[ {} y^{\prime }+y^{\prime \prime \prime } = 0 \]

15779

\[ {} x^{2} y^{\prime \prime }-x y^{\prime }+y = 0 \]

15780

\[ {} y^{\prime \prime }-4 y = 31 \]

15781

\[ {} y^{\prime \prime }+9 y = 27 x +18 \]

15782

\[ {} x^{2} y^{\prime \prime }+x y^{\prime }-4 y = -3 x -\frac {3}{x} \]

15783

\[ {} 4 y^{\prime \prime }+4 y^{\prime }-3 y = 0 \]

15784

\[ {} -4 y+6 y^{\prime }-4 y^{\prime \prime }+y^{\prime \prime \prime } = 0 \]

15785

\[ {} y^{\prime \prime \prime \prime }-16 y = 0 \]

15786

\[ {} y^{\prime \prime \prime \prime }+16 y = 0 \]

15787

\[ {} y^{\prime \prime \prime \prime }-4 y^{\prime \prime \prime }+8 y^{\prime \prime }-8 y^{\prime }+4 y = 0 \]

15788

\[ {} y^{\prime \prime \prime \prime }-8 y^{\prime } = 0 \]

15789

\[ {} 36 y^{\prime \prime \prime \prime }-12 y^{\prime \prime \prime }-11 y^{\prime \prime }+2 y^{\prime }+y = 0 \]

15790

\[ {} y^{\left (5\right )}-3 y^{\prime \prime \prime \prime }+3 y^{\prime \prime \prime }-3 y^{\prime \prime }+2 y^{\prime } = 0 \]

15791

\[ {} y^{\left (5\right )}-y^{\prime \prime \prime \prime }+y^{\prime \prime \prime }+35 y^{\prime \prime }+16 y^{\prime }-52 y = 0 \]

15792

\[ {} y^{\left (8\right )}+8 y^{\prime \prime \prime \prime }+16 y = 0 \]

15793

\[ {} y^{\prime \prime }+\alpha y = 0 \]

15794

\[ {} y^{\prime \prime \prime }+\left (-3-4 i\right ) y^{\prime \prime }+\left (-4+12 i\right ) y^{\prime }+12 y = 0 \]

15795

\[ {} y^{\prime \prime \prime \prime }+\left (-3-i\right ) y^{\prime \prime \prime }+\left (4+3 i\right ) y^{\prime \prime } = 0 \]

15796

\[ {} y^{\prime }-i y = 0 \]

15797

\[ {} y^{\prime \prime \prime \prime }-6 y^{\prime \prime \prime }+13 y^{\prime \prime }-12 y^{\prime }+4 y = 2 \,{\mathrm e}^{x}-4 \,{\mathrm e}^{2 x} \]

15798

\[ {} y^{\prime \prime \prime \prime }+4 y^{\prime \prime } = 24 x^{2}-6 x +14+32 \cos \left (2 x \right ) \]

15799

\[ {} y+2 y^{\prime \prime }+y^{\prime \prime \prime \prime } = 3+\cos \left (2 x \right ) \]

15800

\[ {} y^{\prime \prime \prime \prime }-3 y^{\prime \prime \prime }+3 y^{\prime \prime }-y^{\prime } = 6 x -20-120 x^{2} {\mathrm e}^{x} \]