Internal
problem
ID
[15782]
Book
:
Ordinary
Differential
Equations
by
Charles
E.
Roberts,
Jr.
CRC
Press.
2010
Section
:
Chapter
4.
N-th
Order
Linear
Differential
Equations.
Exercises
4.1,
page
186
Problem
number
:
18
Date
solved
:
Thursday, October 02, 2025 at 10:27:56 AM
CAS
classification
:
[[_2nd_order, _with_linear_symmetries]]
With initial conditions
ode:=x^2*diff(diff(y(x),x),x)+x*diff(y(x),x)-4*y(x) = -3*x-3/x; ic:=[y(1) = 3, D(y)(1) = -6]; dsolve([ode,op(ic)],y(x), singsol=all);
ode=x^2*D[y[x],{x,2}]+x*D[y[x],x]-4*y[x]==-3*x-3/x; ic={y[1]==3,Derivative[1][y][1]==-6}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(x**2*Derivative(y(x), (x, 2)) + x*Derivative(y(x), x) + 3*x - 4*y(x) + 3/x,0) ics = {y(1): 3, Subs(Derivative(y(x), x), x, 1): -6} dsolve(ode,func=y(x),ics=ics)