6.154 Problems 15301 to 15400

Table 6.307: Main lookup table sequentially arranged

#

ODE

Mathematica

Maple

Sympy

15301

\[ {} 4 y^{\prime \prime }-4 y^{\prime }+5 y = 0 \]

15302

\[ {} y^{\prime \prime }+2 y^{\prime }+y = 0 \]

15303

\[ {} y^{\prime \prime }-4 y^{\prime }+5 y = 0 \]

15304

\[ {} y^{\prime \prime }-y^{\prime }-6 y = 0 \]

15305

\[ {} 4 y^{\prime \prime }-4 y^{\prime }+37 y = 0 \]

15306

\[ {} y^{\prime \prime }+3 y^{\prime }+2 y = 0 \]

15307

\[ {} y^{\prime \prime }+2 y^{\prime }+5 y = 0 \]

15308

\[ {} 4 y^{\prime \prime }-12 y^{\prime }+13 y = 0 \]

15309

\[ {} y^{\prime \prime }+4 y^{\prime }+13 y = 0 \]

15310

\[ {} y^{\prime \prime }+6 y^{\prime }+9 y = 0 \]

15311

\[ {} y^{\prime \prime \prime \prime }+y = 0 \]

15312

\[ {} y^{\prime \prime }-2 y^{\prime }+5 y = 0 \]

15313

\[ {} y^{\prime \prime }-20 y^{\prime }+51 y = 0 \]

15314

\[ {} 2 y^{\prime \prime }+3 y^{\prime }+y = 0 \]

15315

\[ {} 3 y^{\prime \prime }+8 y^{\prime }-3 y = 0 \]

15316

\[ {} 2 y^{\prime \prime }+20 y^{\prime }+51 y = 0 \]

15317

\[ {} 4 y^{\prime \prime }+40 y^{\prime }+101 y = 0 \]

15318

\[ {} y^{\prime \prime }+6 y^{\prime }+34 y = 0 \]

15319

\[ {} y^{\prime \prime \prime }+8 y^{\prime \prime }+16 y^{\prime } = 0 \]

15320

\[ {} y^{\prime \prime \prime }+6 y^{\prime \prime }+13 y^{\prime } = 0 \]

15321

\[ {} y^{\prime \prime \prime }-6 y^{\prime \prime }+13 y^{\prime } = 0 \]

15322

\[ {} y^{\prime \prime \prime }+4 y^{\prime \prime }+29 y^{\prime } = 0 \]

15323

\[ {} y^{\prime \prime \prime }+6 y^{\prime \prime }+25 y^{\prime } = 0 \]

15324

\[ {} y^{\prime \prime \prime }-6 y^{\prime \prime }+10 y^{\prime } = 0 \]

15325

\[ {} y^{\prime \prime \prime \prime }+13 y^{\prime \prime }+36 y = 0 \]

15326

\[ {} y^{\prime \prime }+2 y^{\prime }+3 y = 9 t \]

15327

\[ {} 4 y^{\prime \prime }+16 y^{\prime }+17 y = 17 t -1 \]

15328

\[ {} 4 y^{\prime \prime }+5 y^{\prime }+4 y = 3 \,{\mathrm e}^{-t} \]

15329

\[ {} y^{\prime \prime }-4 y^{\prime }+4 y = {\mathrm e}^{2 t} t^{2} \]

15330

\[ {} y^{\prime \prime }+9 y = {\mathrm e}^{-2 t} \]

15331

\[ {} 2 y^{\prime \prime }-3 y^{\prime }+17 y = 17 t -1 \]

15332

\[ {} y^{\prime \prime }+2 y^{\prime }+y = {\mathrm e}^{-t} \]

15333

\[ {} y^{\prime \prime }-2 y^{\prime }+5 y = t +2 \]

15334

\[ {} y+2 y^{\prime } = {\mathrm e}^{-\frac {t}{2}} \]

15335

\[ {} y^{\prime \prime }+8 y^{\prime }+20 y = \sin \left (2 t \right ) \]

15336

\[ {} 4 y^{\prime \prime }-4 y^{\prime }+y = t^{2} \]

15337

\[ {} 2 y^{\prime \prime }+y^{\prime }-y = 4 \sin \left (t \right ) \]

15338

\[ {} -y+y^{\prime } = {\mathrm e}^{2 t} \]

15339

\[ {} 3 y^{\prime \prime }+5 y^{\prime }-2 y = 7 \,{\mathrm e}^{-2 t} \]

15340

\[ {} y+y^{\prime } = \operatorname {Heaviside}\left (t \right )-\operatorname {Heaviside}\left (t -2\right ) \]

15341

\[ {} -2 y+y^{\prime } = 4 t \left (\operatorname {Heaviside}\left (t \right )-\operatorname {Heaviside}\left (t -2\right )\right ) \]

15342

\[ {} y^{\prime \prime }+9 y = 24 \sin \left (t \right ) \left (\operatorname {Heaviside}\left (t \right )+\operatorname {Heaviside}\left (t -\pi \right )\right ) \]

15343

\[ {} y^{\prime \prime }+2 y^{\prime }+y = \operatorname {Heaviside}\left (t \right )-\operatorname {Heaviside}\left (t -1\right ) \]

15344

\[ {} y^{\prime \prime }+2 y^{\prime }+2 y = 5 \cos \left (t \right ) \left (\operatorname {Heaviside}\left (t \right )-\operatorname {Heaviside}\left (t -\frac {\pi }{2}\right )\right ) \]

15345

\[ {} y^{\prime \prime }+5 y^{\prime }+6 y = 36 t \left (\operatorname {Heaviside}\left (t \right )-\operatorname {Heaviside}\left (t -1\right )\right ) \]

15346

\[ {} y^{\prime \prime }+4 y^{\prime }+13 y = 39 \operatorname {Heaviside}\left (t \right )-507 \left (t -2\right ) \operatorname {Heaviside}\left (t -2\right ) \]

15347

\[ {} y^{\prime \prime }+4 y = 3 \operatorname {Heaviside}\left (t \right )-3 \operatorname {Heaviside}\left (t -4\right )+\left (2 t -5\right ) \operatorname {Heaviside}\left (t -4\right ) \]

15348

\[ {} 4 y^{\prime \prime }+4 y^{\prime }+5 y = 25 t \left (\operatorname {Heaviside}\left (t \right )-\operatorname {Heaviside}\left (t -\frac {\pi }{2}\right )\right ) \]

15349

\[ {} y^{\prime \prime }+4 y^{\prime }+3 y = \operatorname {Heaviside}\left (t \right )-\operatorname {Heaviside}\left (t -1\right )+\operatorname {Heaviside}\left (t -2\right )-\operatorname {Heaviside}\left (t -3\right ) \]

15350

\[ {} y^{\prime \prime }-2 y^{\prime } = \left \{\begin {array}{cc} 4 & 0\le t <1 \\ 6 & 1\le t \end {array}\right . \]

15351

\[ {} y^{\prime \prime }-3 y^{\prime }+2 y = \left \{\begin {array}{cc} 0 & 0\le t <1 \\ 1 & 1\le t <2 \\ -1 & 2\le t \end {array}\right . \]

15352

\[ {} y^{\prime \prime }+3 y^{\prime }+2 y = \left \{\begin {array}{cc} 1 & 0\le t <2 \\ -1 & 2\le t \end {array}\right . \]

15353

\[ {} y^{\prime \prime }+y = \left \{\begin {array}{cc} t & 0\le t <\pi \\ -t & \pi \le t \end {array}\right . \]

15354

\[ {} y^{\prime \prime }+4 y = \left \{\begin {array}{cc} 8 t & 0\le t <\frac {\pi }{2} \\ 8 \pi & \frac {\pi }{2}\le t \end {array}\right . \]

15355

\[ {} y^{\prime \prime }+4 \pi ^{2} y = 3 \delta \left (t -\frac {1}{3}\right )-\delta \left (t -1\right ) \]

15356

\[ {} y^{\prime \prime }+2 y^{\prime }+2 y = 3 \delta \left (t -1\right ) \]

15357

\[ {} y^{\prime \prime }+4 y^{\prime }+29 y = 5 \delta \left (t -\pi \right )-5 \delta \left (t -2 \pi \right ) \]

15358

\[ {} y^{\prime \prime }+3 y^{\prime }+2 y = 1-\delta \left (t -1\right ) \]

15359

\[ {} 4 y^{\prime \prime }+4 y^{\prime }+y = {\mathrm e}^{-\frac {t}{2}} \delta \left (t -1\right ) \]

15360

\[ {} y^{\prime \prime }-7 y^{\prime }+6 y = \delta \left (t -1\right ) \]

15361

\[ {} 10 Q^{\prime }+100 Q = \operatorname {Heaviside}\left (t -1\right )-\operatorname {Heaviside}\left (t -2\right ) \]

15362

\[ {} y^{\prime \prime \prime }+y^{\prime \prime }+4 y^{\prime }+4 y = 8 \]

15363

\[ {} y^{\prime \prime \prime }-2 y^{\prime \prime }-y^{\prime }+2 y = 4 t \]

15364

\[ {} y^{\prime \prime \prime }-y^{\prime \prime }+4 y^{\prime }-4 y = 8 \,{\mathrm e}^{2 t}-5 \,{\mathrm e}^{t} \]

15365

\[ {} y^{\prime \prime \prime }-5 y^{\prime \prime }+y^{\prime }-y = -t^{2}+2 t -10 \]

15366

\[ {} y^{\prime \prime \prime \prime }-5 y^{\prime \prime }+4 y = 12 \operatorname {Heaviside}\left (t \right )-12 \operatorname {Heaviside}\left (t -1\right ) \]

15367

\[ {} y^{\prime \prime \prime \prime }-16 y = 32 \operatorname {Heaviside}\left (t \right )-32 \operatorname {Heaviside}\left (t -\pi \right ) \]

15368

\[ {} t^{2} y^{\prime \prime }+3 t y^{\prime }+y = t^{7} \]

15369

\[ {} t^{2} y^{\prime \prime }-6 t y^{\prime }+y \sin \left (2 t \right ) = \ln \left (t \right ) \]

15370

\[ {} y^{\prime \prime }+3 y^{\prime }+\frac {y}{t} = t \]

15371

\[ {} y^{\prime \prime }+t y^{\prime }-y \ln \left (t \right ) = \cos \left (2 t \right ) \]

15372

\[ {} t^{3} y^{\prime \prime }-2 t y^{\prime }+y = t^{4} \]

15373

\[ {} y^{\prime \prime }+2 y^{\prime }+y = 1 \]

15374

\[ {} y^{\prime \prime }-2 y^{\prime }+5 y = {\mathrm e}^{t} \]

15375

\[ {} y^{\prime \prime }-3 y^{\prime }-7 y = 4 \]

15376

\[ {} y^{\prime \prime \prime }+3 y^{\prime \prime }+3 y^{\prime }+y = 5 \]

15377

\[ {} 3 y^{\prime \prime }+5 y^{\prime }-2 y = 3 t^{2} \]

15378

\[ {} y^{\prime \prime \prime } = 2 y^{\prime \prime }-4 y^{\prime }+\sin \left (t \right ) \]

15379

\[ {} [x^{\prime }\left (t \right ) = x \left (t \right )-2 y \left (t \right ), y^{\prime }\left (t \right ) = 3 x \left (t \right )-4 y \left (t \right )] \]

15380

\[ {} \left [x^{\prime }\left (t \right ) = \frac {5 x \left (t \right )}{4}+\frac {3 y \left (t \right )}{4}, y^{\prime }\left (t \right ) = \frac {x \left (t \right )}{2}-\frac {3 y \left (t \right )}{2}\right ] \]

15381

\[ {} [x^{\prime }\left (t \right )-x \left (t \right )+2 y \left (t \right ) = 0, y^{\prime }\left (t \right )+y \left (t \right )-x \left (t \right ) = 0] \]

15382

\[ {} [x^{\prime }\left (t \right )+5 x \left (t \right )-2 y \left (t \right ) = 0, 2 x \left (t \right )+y^{\prime }\left (t \right )-y \left (t \right ) = 0] \]

15383

\[ {} [x^{\prime }\left (t \right )-3 x \left (t \right )+2 y \left (t \right ) = 0, y^{\prime }\left (t \right )-x \left (t \right )+3 y \left (t \right ) = 0] \]

15384

\[ {} [x^{\prime }\left (t \right )+x \left (t \right )-z \left (t \right ) = 0, x \left (t \right )+y^{\prime }\left (t \right )-y \left (t \right ) = 0, z^{\prime }\left (t \right )+x \left (t \right )+2 y \left (t \right )-3 z \left (t \right ) = 0] \]

15385

\[ {} \left [x^{\prime }\left (t \right ) = -\frac {x \left (t \right )}{2}+2 y \left (t \right )-3 z \left (t \right ), y^{\prime }\left (t \right ) = y \left (t \right )-\frac {z \left (t \right )}{2}, z^{\prime }\left (t \right ) = -2 x \left (t \right )+z \left (t \right )\right ] \]

15386

\[ {} [x^{\prime }\left (t \right )+y^{\prime }\left (t \right ) = y \left (t \right ), x^{\prime }\left (t \right )-y^{\prime }\left (t \right ) = x \left (t \right )] \]

15387

\[ {} [x^{\prime }\left (t \right )+2 y^{\prime }\left (t \right ) = t, x^{\prime }\left (t \right )-y^{\prime }\left (t \right ) = x \left (t \right )+y \left (t \right )] \]

15388

\[ {} [x^{\prime }\left (t \right )-y^{\prime }\left (t \right ) = x \left (t \right )+y \left (t \right )-t, 2 x^{\prime }\left (t \right )+3 y^{\prime }\left (t \right ) = 2 x \left (t \right )+6] \]

15389

\[ {} [2 x^{\prime }\left (t \right )-y^{\prime }\left (t \right ) = t, 3 x^{\prime }\left (t \right )+2 y^{\prime }\left (t \right ) = y \left (t \right )] \]

15390

\[ {} [5 x^{\prime }\left (t \right )-3 y^{\prime }\left (t \right ) = x \left (t \right )+y \left (t \right ), 3 x^{\prime }\left (t \right )-y^{\prime }\left (t \right ) = t] \]

15391

\[ {} [x^{\prime }\left (t \right )-4 y^{\prime }\left (t \right ) = 0, 2 x^{\prime }\left (t \right )-3 y^{\prime }\left (t \right ) = y \left (t \right )+t] \]

15392

\[ {} [3 x^{\prime }\left (t \right )+2 y^{\prime }\left (t \right ) = \sin \left (t \right ), x^{\prime }\left (t \right )-2 y^{\prime }\left (t \right ) = x \left (t \right )+y \left (t \right )+t] \]

15393

\[ {} [x^{\prime }\left (t \right ) = -4 x \left (t \right )+9 y \left (t \right )+12 \,{\mathrm e}^{-t}, y^{\prime }\left (t \right ) = -5 x \left (t \right )+2 y \left (t \right )] \]

15394

\[ {} [x^{\prime }\left (t \right ) = -7 x \left (t \right )+6 y \left (t \right )+6 \,{\mathrm e}^{-t}, y^{\prime }\left (t \right ) = -12 x \left (t \right )+5 y \left (t \right )+37] \]

15395

\[ {} [x^{\prime }\left (t \right ) = -7 x \left (t \right )+10 y \left (t \right )+18 \,{\mathrm e}^{t}, y^{\prime }\left (t \right ) = -10 x \left (t \right )+9 y \left (t \right )+37] \]

15396

\[ {} [x^{\prime }\left (t \right ) = -14 x \left (t \right )+39 y \left (t \right )+78 \sinh \left (t \right ), y^{\prime }\left (t \right ) = -6 x \left (t \right )+16 y \left (t \right )+6 \cosh \left (t \right )] \]

15397

\[ {} [x^{\prime }\left (t \right ) = 2 x \left (t \right )+4 y \left (t \right )-2 z \left (t \right )-2 \sinh \left (t \right ), y^{\prime }\left (t \right ) = 4 x \left (t \right )+2 y \left (t \right )-2 z \left (t \right )+10 \cosh \left (t \right ), z^{\prime }\left (t \right ) = -x \left (t \right )+3 y \left (t \right )+z \left (t \right )+5] \]

15398

\[ {} [x^{\prime }\left (t \right ) = 2 x \left (t \right )+6 y \left (t \right )-2 z \left (t \right )+50 \,{\mathrm e}^{t}, y^{\prime }\left (t \right ) = 6 x \left (t \right )+2 y \left (t \right )-2 z \left (t \right )+21 \,{\mathrm e}^{-t}, z^{\prime }\left (t \right ) = -x \left (t \right )+6 y \left (t \right )+z \left (t \right )+9] \]

15399

\[ {} [x^{\prime }\left (t \right ) = -2 x \left (t \right )-2 y \left (t \right )+4 z \left (t \right ), y^{\prime }\left (t \right ) = -2 x \left (t \right )+y \left (t \right )+2 z \left (t \right ), z^{\prime }\left (t \right ) = -4 x \left (t \right )-2 y \left (t \right )+6 z \left (t \right )+{\mathrm e}^{2 t}] \]

15400

\[ {} [x^{\prime }\left (t \right ) = 3 x \left (t \right )-2 y \left (t \right )+3 z \left (t \right ), y^{\prime }\left (t \right ) = x \left (t \right )-y \left (t \right )+2 z \left (t \right )+2 \,{\mathrm e}^{-t}, z^{\prime }\left (t \right ) = -2 x \left (t \right )+2 y \left (t \right )-2 z \left (t \right )] \]