| # | ODE | Mathematica | Maple | Sympy |
| \[
{} 4 y^{\prime \prime }-4 y^{\prime }+5 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+2 y^{\prime }+y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }-4 y^{\prime }+5 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }-y^{\prime }-6 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 4 y^{\prime \prime }-4 y^{\prime }+37 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+3 y^{\prime }+2 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+2 y^{\prime }+5 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 4 y^{\prime \prime }-12 y^{\prime }+13 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+4 y^{\prime }+13 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+6 y^{\prime }+9 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime \prime }+y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }-2 y^{\prime }+5 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }-20 y^{\prime }+51 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 2 y^{\prime \prime }+3 y^{\prime }+y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 3 y^{\prime \prime }+8 y^{\prime }-3 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 2 y^{\prime \prime }+20 y^{\prime }+51 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 4 y^{\prime \prime }+40 y^{\prime }+101 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+6 y^{\prime }+34 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime }+8 y^{\prime \prime }+16 y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime }+6 y^{\prime \prime }+13 y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime }-6 y^{\prime \prime }+13 y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime }+4 y^{\prime \prime }+29 y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime }+6 y^{\prime \prime }+25 y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime }-6 y^{\prime \prime }+10 y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime \prime }+13 y^{\prime \prime }+36 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+2 y^{\prime }+3 y = 9 t
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 4 y^{\prime \prime }+16 y^{\prime }+17 y = 17 t -1
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 4 y^{\prime \prime }+5 y^{\prime }+4 y = 3 \,{\mathrm e}^{-t}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }-4 y^{\prime }+4 y = {\mathrm e}^{2 t} t^{2}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+9 y = {\mathrm e}^{-2 t}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 2 y^{\prime \prime }-3 y^{\prime }+17 y = 17 t -1
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+2 y^{\prime }+y = {\mathrm e}^{-t}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }-2 y^{\prime }+5 y = t +2
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y+2 y^{\prime } = {\mathrm e}^{-\frac {t}{2}}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+8 y^{\prime }+20 y = \sin \left (2 t \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 4 y^{\prime \prime }-4 y^{\prime }+y = t^{2}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 2 y^{\prime \prime }+y^{\prime }-y = 4 \sin \left (t \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} -y+y^{\prime } = {\mathrm e}^{2 t}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 3 y^{\prime \prime }+5 y^{\prime }-2 y = 7 \,{\mathrm e}^{-2 t}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y+y^{\prime } = \operatorname {Heaviside}\left (t \right )-\operatorname {Heaviside}\left (t -2\right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} -2 y+y^{\prime } = 4 t \left (\operatorname {Heaviside}\left (t \right )-\operatorname {Heaviside}\left (t -2\right )\right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+9 y = 24 \sin \left (t \right ) \left (\operatorname {Heaviside}\left (t \right )+\operatorname {Heaviside}\left (t -\pi \right )\right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+2 y^{\prime }+y = \operatorname {Heaviside}\left (t \right )-\operatorname {Heaviside}\left (t -1\right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+2 y^{\prime }+2 y = 5 \cos \left (t \right ) \left (\operatorname {Heaviside}\left (t \right )-\operatorname {Heaviside}\left (t -\frac {\pi }{2}\right )\right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+5 y^{\prime }+6 y = 36 t \left (\operatorname {Heaviside}\left (t \right )-\operatorname {Heaviside}\left (t -1\right )\right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+4 y^{\prime }+13 y = 39 \operatorname {Heaviside}\left (t \right )-507 \left (t -2\right ) \operatorname {Heaviside}\left (t -2\right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+4 y = 3 \operatorname {Heaviside}\left (t \right )-3 \operatorname {Heaviside}\left (t -4\right )+\left (2 t -5\right ) \operatorname {Heaviside}\left (t -4\right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 4 y^{\prime \prime }+4 y^{\prime }+5 y = 25 t \left (\operatorname {Heaviside}\left (t \right )-\operatorname {Heaviside}\left (t -\frac {\pi }{2}\right )\right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+4 y^{\prime }+3 y = \operatorname {Heaviside}\left (t \right )-\operatorname {Heaviside}\left (t -1\right )+\operatorname {Heaviside}\left (t -2\right )-\operatorname {Heaviside}\left (t -3\right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }-2 y^{\prime } = \left \{\begin {array}{cc} 4 & 0\le t <1 \\ 6 & 1\le t \end {array}\right .
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime \prime }-3 y^{\prime }+2 y = \left \{\begin {array}{cc} 0 & 0\le t <1 \\ 1 & 1\le t <2 \\ -1 & 2\le t \end {array}\right .
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime \prime }+3 y^{\prime }+2 y = \left \{\begin {array}{cc} 1 & 0\le t <2 \\ -1 & 2\le t \end {array}\right .
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime \prime }+y = \left \{\begin {array}{cc} t & 0\le t <\pi \\ -t & \pi \le t \end {array}\right .
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+4 y = \left \{\begin {array}{cc} 8 t & 0\le t <\frac {\pi }{2} \\ 8 \pi & \frac {\pi }{2}\le t \end {array}\right .
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+4 \pi ^{2} y = 3 \delta \left (t -\frac {1}{3}\right )-\delta \left (t -1\right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+2 y^{\prime }+2 y = 3 \delta \left (t -1\right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+4 y^{\prime }+29 y = 5 \delta \left (t -\pi \right )-5 \delta \left (t -2 \pi \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+3 y^{\prime }+2 y = 1-\delta \left (t -1\right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 4 y^{\prime \prime }+4 y^{\prime }+y = {\mathrm e}^{-\frac {t}{2}} \delta \left (t -1\right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }-7 y^{\prime }+6 y = \delta \left (t -1\right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 10 Q^{\prime }+100 Q = \operatorname {Heaviside}\left (t -1\right )-\operatorname {Heaviside}\left (t -2\right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime }+y^{\prime \prime }+4 y^{\prime }+4 y = 8
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime }-2 y^{\prime \prime }-y^{\prime }+2 y = 4 t
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime }-y^{\prime \prime }+4 y^{\prime }-4 y = 8 \,{\mathrm e}^{2 t}-5 \,{\mathrm e}^{t}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime }-5 y^{\prime \prime }+y^{\prime }-y = -t^{2}+2 t -10
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime \prime \prime \prime }-5 y^{\prime \prime }+4 y = 12 \operatorname {Heaviside}\left (t \right )-12 \operatorname {Heaviside}\left (t -1\right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime \prime }-16 y = 32 \operatorname {Heaviside}\left (t \right )-32 \operatorname {Heaviside}\left (t -\pi \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} t^{2} y^{\prime \prime }+3 t y^{\prime }+y = t^{7}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} t^{2} y^{\prime \prime }-6 t y^{\prime }+y \sin \left (2 t \right ) = \ln \left (t \right )
\]
|
✗ |
✗ |
✗ |
|
| \[
{} y^{\prime \prime }+3 y^{\prime }+\frac {y}{t} = t
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime \prime }+t y^{\prime }-y \ln \left (t \right ) = \cos \left (2 t \right )
\]
|
✗ |
✗ |
✗ |
|
| \[
{} t^{3} y^{\prime \prime }-2 t y^{\prime }+y = t^{4}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime \prime }+2 y^{\prime }+y = 1
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }-2 y^{\prime }+5 y = {\mathrm e}^{t}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }-3 y^{\prime }-7 y = 4
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime }+3 y^{\prime \prime }+3 y^{\prime }+y = 5
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 3 y^{\prime \prime }+5 y^{\prime }-2 y = 3 t^{2}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime } = 2 y^{\prime \prime }-4 y^{\prime }+\sin \left (t \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} [x^{\prime }\left (t \right ) = x \left (t \right )-2 y \left (t \right ), y^{\prime }\left (t \right ) = 3 x \left (t \right )-4 y \left (t \right )]
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \left [x^{\prime }\left (t \right ) = \frac {5 x \left (t \right )}{4}+\frac {3 y \left (t \right )}{4}, y^{\prime }\left (t \right ) = \frac {x \left (t \right )}{2}-\frac {3 y \left (t \right )}{2}\right ]
\]
|
✓ |
✓ |
✓ |
|
| \[
{} [x^{\prime }\left (t \right )-x \left (t \right )+2 y \left (t \right ) = 0, y^{\prime }\left (t \right )+y \left (t \right )-x \left (t \right ) = 0]
\]
|
✓ |
✓ |
✓ |
|
| \[
{} [x^{\prime }\left (t \right )+5 x \left (t \right )-2 y \left (t \right ) = 0, 2 x \left (t \right )+y^{\prime }\left (t \right )-y \left (t \right ) = 0]
\]
|
✓ |
✓ |
✓ |
|
| \[
{} [x^{\prime }\left (t \right )-3 x \left (t \right )+2 y \left (t \right ) = 0, y^{\prime }\left (t \right )-x \left (t \right )+3 y \left (t \right ) = 0]
\]
|
✓ |
✓ |
✓ |
|
| \[
{} [x^{\prime }\left (t \right )+x \left (t \right )-z \left (t \right ) = 0, x \left (t \right )+y^{\prime }\left (t \right )-y \left (t \right ) = 0, z^{\prime }\left (t \right )+x \left (t \right )+2 y \left (t \right )-3 z \left (t \right ) = 0]
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \left [x^{\prime }\left (t \right ) = -\frac {x \left (t \right )}{2}+2 y \left (t \right )-3 z \left (t \right ), y^{\prime }\left (t \right ) = y \left (t \right )-\frac {z \left (t \right )}{2}, z^{\prime }\left (t \right ) = -2 x \left (t \right )+z \left (t \right )\right ]
\]
|
✓ |
✓ |
✓ |
|
| \[
{} [x^{\prime }\left (t \right )+y^{\prime }\left (t \right ) = y \left (t \right ), x^{\prime }\left (t \right )-y^{\prime }\left (t \right ) = x \left (t \right )]
\]
|
✓ |
✓ |
✓ |
|
| \[
{} [x^{\prime }\left (t \right )+2 y^{\prime }\left (t \right ) = t, x^{\prime }\left (t \right )-y^{\prime }\left (t \right ) = x \left (t \right )+y \left (t \right )]
\]
|
✓ |
✓ |
✓ |
|
| \[
{} [x^{\prime }\left (t \right )-y^{\prime }\left (t \right ) = x \left (t \right )+y \left (t \right )-t, 2 x^{\prime }\left (t \right )+3 y^{\prime }\left (t \right ) = 2 x \left (t \right )+6]
\]
|
✓ |
✓ |
✓ |
|
| \[
{} [2 x^{\prime }\left (t \right )-y^{\prime }\left (t \right ) = t, 3 x^{\prime }\left (t \right )+2 y^{\prime }\left (t \right ) = y \left (t \right )]
\]
|
✓ |
✓ |
✓ |
|
| \[
{} [5 x^{\prime }\left (t \right )-3 y^{\prime }\left (t \right ) = x \left (t \right )+y \left (t \right ), 3 x^{\prime }\left (t \right )-y^{\prime }\left (t \right ) = t]
\]
|
✓ |
✓ |
✓ |
|
| \[
{} [x^{\prime }\left (t \right )-4 y^{\prime }\left (t \right ) = 0, 2 x^{\prime }\left (t \right )-3 y^{\prime }\left (t \right ) = y \left (t \right )+t]
\]
|
✓ |
✓ |
✓ |
|
| \[
{} [3 x^{\prime }\left (t \right )+2 y^{\prime }\left (t \right ) = \sin \left (t \right ), x^{\prime }\left (t \right )-2 y^{\prime }\left (t \right ) = x \left (t \right )+y \left (t \right )+t]
\]
|
✓ |
✓ |
✓ |
|
| \[
{} [x^{\prime }\left (t \right ) = -4 x \left (t \right )+9 y \left (t \right )+12 \,{\mathrm e}^{-t}, y^{\prime }\left (t \right ) = -5 x \left (t \right )+2 y \left (t \right )]
\]
|
✓ |
✓ |
✓ |
|
| \[
{} [x^{\prime }\left (t \right ) = -7 x \left (t \right )+6 y \left (t \right )+6 \,{\mathrm e}^{-t}, y^{\prime }\left (t \right ) = -12 x \left (t \right )+5 y \left (t \right )+37]
\]
|
✓ |
✓ |
✓ |
|
| \[
{} [x^{\prime }\left (t \right ) = -7 x \left (t \right )+10 y \left (t \right )+18 \,{\mathrm e}^{t}, y^{\prime }\left (t \right ) = -10 x \left (t \right )+9 y \left (t \right )+37]
\]
|
✓ |
✓ |
✓ |
|
| \[
{} [x^{\prime }\left (t \right ) = -14 x \left (t \right )+39 y \left (t \right )+78 \sinh \left (t \right ), y^{\prime }\left (t \right ) = -6 x \left (t \right )+16 y \left (t \right )+6 \cosh \left (t \right )]
\]
|
✓ |
✓ |
✓ |
|
| \[
{} [x^{\prime }\left (t \right ) = 2 x \left (t \right )+4 y \left (t \right )-2 z \left (t \right )-2 \sinh \left (t \right ), y^{\prime }\left (t \right ) = 4 x \left (t \right )+2 y \left (t \right )-2 z \left (t \right )+10 \cosh \left (t \right ), z^{\prime }\left (t \right ) = -x \left (t \right )+3 y \left (t \right )+z \left (t \right )+5]
\]
|
✓ |
✓ |
✓ |
|
| \[
{} [x^{\prime }\left (t \right ) = 2 x \left (t \right )+6 y \left (t \right )-2 z \left (t \right )+50 \,{\mathrm e}^{t}, y^{\prime }\left (t \right ) = 6 x \left (t \right )+2 y \left (t \right )-2 z \left (t \right )+21 \,{\mathrm e}^{-t}, z^{\prime }\left (t \right ) = -x \left (t \right )+6 y \left (t \right )+z \left (t \right )+9]
\]
|
✓ |
✓ |
✓ |
|
| \[
{} [x^{\prime }\left (t \right ) = -2 x \left (t \right )-2 y \left (t \right )+4 z \left (t \right ), y^{\prime }\left (t \right ) = -2 x \left (t \right )+y \left (t \right )+2 z \left (t \right ), z^{\prime }\left (t \right ) = -4 x \left (t \right )-2 y \left (t \right )+6 z \left (t \right )+{\mathrm e}^{2 t}]
\]
|
✓ |
✓ |
✓ |
|
| \[
{} [x^{\prime }\left (t \right ) = 3 x \left (t \right )-2 y \left (t \right )+3 z \left (t \right ), y^{\prime }\left (t \right ) = x \left (t \right )-y \left (t \right )+2 z \left (t \right )+2 \,{\mathrm e}^{-t}, z^{\prime }\left (t \right ) = -2 x \left (t \right )+2 y \left (t \right )-2 z \left (t \right )]
\]
|
✓ |
✓ |
✓ |
|