14.243 Problem number 2033

\[ \int \frac {\sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{(d+e x)^{5/2}} \, dx \]

Optimal antiderivative \[ \frac {c d \arctan \left (\frac {\sqrt {e}\, \sqrt {a d e +\left (a \,e^{2}+c \,d^{2}\right ) x +c d e \,x^{2}}}{\sqrt {-a \,e^{2}+c \,d^{2}}\, \sqrt {e x +d}}\right )}{e^{\frac {3}{2}} \sqrt {-a \,e^{2}+c \,d^{2}}}-\frac {\sqrt {a d e +\left (a \,e^{2}+c \,d^{2}\right ) x +c d e \,x^{2}}}{e \left (e x +d \right )^{\frac {3}{2}}} \]

command

integrate((a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2)/(e*x+d)^(5/2),x, algorithm="giac")

Giac 1.9.0-11 via sagemath 9.6 output

\[ \frac {{\left (\frac {c^{2} d^{2} \arctan \left (\frac {\sqrt {{\left (x e + d\right )} c d e - c d^{2} e + a e^{3}}}{\sqrt {c d^{2} e - a e^{3}}}\right ) e}{\sqrt {c d^{2} e - a e^{3}}} - \frac {\sqrt {{\left (x e + d\right )} c d e - c d^{2} e + a e^{3}} c d}{x e + d}\right )} e^{\left (-2\right )}}{c d} \]

Giac 1.7.0 via sagemath 9.3 output

\[ \int \frac {\sqrt {c d e x^{2} + a d e + {\left (c d^{2} + a e^{2}\right )} x}}{{\left (e x + d\right )}^{\frac {5}{2}}}\,{d x} \]________________________________________________________________________________________