14.242 Problem number 2032

\[ \int \frac {\sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{(d+e x)^{3/2}} \, dx \]

Optimal antiderivative \[ -\frac {2 \arctan \left (\frac {\sqrt {e}\, \sqrt {a d e +\left (a \,e^{2}+c \,d^{2}\right ) x +c d e \,x^{2}}}{\sqrt {-a \,e^{2}+c \,d^{2}}\, \sqrt {e x +d}}\right ) \sqrt {-a \,e^{2}+c \,d^{2}}}{e^{\frac {3}{2}}}+\frac {2 \sqrt {a d e +\left (a \,e^{2}+c \,d^{2}\right ) x +c d e \,x^{2}}}{e \sqrt {e x +d}} \]

command

integrate((a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2)/(e*x+d)^(3/2),x, algorithm="giac")

Giac 1.9.0-11 via sagemath 9.6 output

\[ -2 \, {\left (\frac {{\left (c d^{2} - a e^{2}\right )} \arctan \left (\frac {\sqrt {{\left (x e + d\right )} c d e - c d^{2} e + a e^{3}}}{\sqrt {c d^{2} e - a e^{3}}}\right )}{\sqrt {c d^{2} e - a e^{3}}} - \sqrt {{\left (x e + d\right )} c d e - c d^{2} e + a e^{3}} e^{\left (-1\right )} - \frac {{\left (c d^{2} \arctan \left (\frac {\sqrt {-c d^{2} e + a e^{3}}}{\sqrt {c d^{2} e - a e^{3}}}\right ) e - a \arctan \left (\frac {\sqrt {-c d^{2} e + a e^{3}}}{\sqrt {c d^{2} e - a e^{3}}}\right ) e^{3} - \sqrt {c d^{2} e - a e^{3}} \sqrt {-c d^{2} e + a e^{3}}\right )} e^{\left (-1\right )}}{\sqrt {c d^{2} e - a e^{3}}}\right )} e^{\left (-1\right )} \]

Giac 1.7.0 via sagemath 9.3 output

\[ \int \frac {\sqrt {c d e x^{2} + a d e + {\left (c d^{2} + a e^{2}\right )} x}}{{\left (e x + d\right )}^{\frac {3}{2}}}\,{d x} \]________________________________________________________________________________________