2.1 Linearized PDE of the similarity condition
Obtaining the linearized PDE of the similarity condition for second order ode, which is used to
solve for \(\xi ,\eta \) follows similar method as given earlier for the first order ode. The difference is that
instead of \(y^{\prime }=\omega \left ( x,y\right ) \) the ode now \(y^{\prime \prime }=\omega \left ( x,y,y^{\prime }\right ) \).
\begin{align} \frac {d^{2}y}{dx^{2}} & =\omega \left ( x,y,\frac {dy}{dx}\right ) \nonumber \\ y^{\prime \prime } & =\omega \left ( x,y,y^{\prime }\right ) \tag {A}\end{align}
The linearized similarity condition for second order ode when \(\omega =0\) is
\[ \eta _{xx}+\left ( 2\eta _{xy}-\xi _{xx}\right ) y^{\prime }+\left ( \eta _{yy}-2\xi _{xy}\right ) \left ( y^{\prime }\right ) ^{2}-\xi _{yy}\left ( y^{\prime }\right ) ^{3}=0 \]
Which is polynomial in
\(y^{\prime }\) hence all
the coefficients must be zero giving
\begin{align*} 2\eta _{xy}-\xi _{xx} & =0\\ \eta _{yy}-2\xi _{xy} & =0\\ \xi _{yy} & =0\\ \eta _{xx} & =0 \end{align*}
And for general \(\omega \left ( x,y,y^{\prime }\right ) \), the linearized similarity condition is
\[ -\eta \omega _{y}+\left ( -3y^{\prime }\xi _{y}-2\xi _{x}+\eta _{y}\right ) \omega -\xi \omega _{x}+\left ( -y^{\prime }\eta _{y}+\left ( y^{\prime }\right ) ^{2}\xi _{y}+y^{\prime }\xi _{x}-\eta _{x}\right ) \omega _{y^{\prime }}+\eta _{xx}-\xi _{yy}\left ( y^{\prime }\right ) ^{3}+\left ( \eta _{yy}-2\xi _{yx}\right ) \left ( y^{\prime }\right ) ^{2}+\left ( 2\eta _{yx}-\xi _{xx}\right ) y^{\prime }=0 \]
To continue