| # |
ODE |
CAS classification |
Solved? |
Maple |
Mma |
Sympy |
time(sec) |
| \begin{align*}
x^{\prime }&=\frac {x^{2}+t \sqrt {t^{2}+x^{2}}}{t x} \\
\end{align*} |
[[_homogeneous, ‘class A‘], _dAlembert] |
✓ |
✓ |
✓ |
✗ |
22.683 |
|
| \begin{align*}
y^{\prime }&=\frac {t \sec \left (\frac {y}{t}\right )+y}{t} \\
\end{align*} |
[[_homogeneous, ‘class A‘], _dAlembert] |
✓ |
✓ |
✓ |
✓ |
4.842 |
|
| \begin{align*}
y^{\prime }&=\frac {x^{2}-y^{2}}{3 x y} \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
30.240 |
|
| \begin{align*}
y^{\prime }&=\frac {y \left (1+\ln \left (y\right )-\ln \left (x \right )\right )}{x} \\
\end{align*} |
[[_homogeneous, ‘class A‘], _dAlembert] |
✓ |
✓ |
✓ |
✓ |
7.907 |
|
| \begin{align*}
y^{\prime }&=\sqrt {x +y}-1 \\
\end{align*} |
[[_homogeneous, ‘class C‘], _dAlembert] |
✓ |
✓ |
✓ |
✓ |
2.396 |
|
| \begin{align*}
y^{\prime }&=\left (x +y+2\right )^{2} \\
\end{align*} |
[[_homogeneous, ‘class C‘], _Riccati] |
✓ |
✓ |
✓ |
✓ |
4.077 |
|
| \begin{align*}
y^{\prime }&=\left (x -y+5\right )^{2} \\
\end{align*} |
[[_homogeneous, ‘class C‘], _Riccati] |
✓ |
✓ |
✓ |
✓ |
3.945 |
|
| \begin{align*}
y^{\prime }&=\sin \left (x -y\right ) \\
\end{align*} |
[[_homogeneous, ‘class C‘], _dAlembert] |
✓ |
✓ |
✓ |
✓ |
2.162 |
|
| \begin{align*}
y^{\prime }+\frac {y}{x}&=y^{2} x^{2} \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
4.744 |
|
| \begin{align*}
y^{\prime }-y&={\mathrm e}^{2 x} y^{3} \\
\end{align*} |
[[_1st_order, _with_linear_symmetries], _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
2.055 |
|
| \begin{align*}
y^{\prime }&=\frac {2 y}{x}-y^{2} x^{2} \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
5.513 |
|
| \begin{align*}
y^{\prime }+\frac {y}{x -2}&=5 \left (x -2\right ) \sqrt {y} \\
\end{align*} |
[[_1st_order, _with_linear_symmetries], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
8.233 |
|
| \begin{align*}
x^{\prime }+t x^{3}+\frac {x}{t}&=0 \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
3.793 |
|
| \begin{align*}
y^{\prime }+y&=\frac {{\mathrm e}^{x}}{y^{2}} \\
\end{align*} |
[[_1st_order, _with_linear_symmetries], _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
2.216 |
|
| \begin{align*}
r^{\prime }&=r^{2}+\frac {2 r}{t} \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
5.691 |
|
| \begin{align*}
y^{\prime }+x y^{3}+y&=0 \\
\end{align*} |
[_Bernoulli] |
✓ |
✓ |
✓ |
✓ |
4.145 |
|
| \begin{align*}
x +y-1+\left (-x +y-5\right ) y^{\prime }&=0 \\
\end{align*} | [[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] | ✓ | ✓ | ✓ | ✓ | 18.958 |
|
| \begin{align*}
-4 x -y-1+\left (x +y+3\right ) y^{\prime }&=0 \\
\end{align*} |
[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
✓ |
✓ |
✗ |
47.464 |
|
| \begin{align*}
2 x -y+\left (4 x +y-3\right ) y^{\prime }&=0 \\
\end{align*} |
[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
✓ |
✓ |
✗ |
21.837 |
|
| \begin{align*}
2 x -y+4+\left (x -2 y-2\right ) y^{\prime }&=0 \\
\end{align*} |
[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
✓ |
✓ |
✗ |
2.772 |
|
| \begin{align*}
y^{\prime }&=\frac {2 y}{x}+\cos \left (\frac {y}{x^{2}}\right ) \\
\end{align*} |
[[_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]] |
✓ |
✓ |
✓ |
✗ |
3.759 |
|
| \begin{align*}
y^{\prime }&=-4 x-y \\
x^{\prime }&=2 x-y \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
0.411 |
|
| \begin{align*}
y^{\prime }&=\frac {3 x y}{2 x^{2}-y^{2}} \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
✓ |
✓ |
✗ |
9.771 |
|
| \begin{align*}
y^{\prime }&=x^{3} \left (y-x \right )^{2}+\frac {y}{x} \\
\end{align*} |
[[_homogeneous, ‘class D‘], _rational, _Riccati] |
✓ |
✓ |
✓ |
✓ |
4.069 |
|
| \begin{align*}
y^{\prime }&=\frac {{\mathrm e}^{x +y}}{y-1} \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
3.036 |
|
| \begin{align*}
y^{\prime }-4 y&=32 x^{2} \\
\end{align*} |
[[_linear, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
1.921 |
|
| \begin{align*}
\left (x^{2}-\frac {2}{y^{3}}\right ) y^{\prime }+2 y x -3 x^{2}&=0 \\
\end{align*} |
[_exact, _rational] |
✓ |
✓ |
✓ |
✗ |
3.128 |
|
| \begin{align*}
y^{\prime }+\frac {3 y}{x}&=x^{2}-4 x +3 \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✓ |
3.020 |
|
| \begin{align*}
2 x y^{3}-\left (-x^{2}+1\right ) y^{\prime }&=0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
4.352 |
|
| \begin{align*}
t^{3} y^{2}+\frac {t^{4} y^{\prime }}{y^{6}}&=0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✗ |
3.234 |
|
| \begin{align*}
y^{\prime }+\frac {2 y}{x}&=2 y^{2} x^{2} \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
2.283 |
|
| \begin{align*}
x^{2}+y^{2}+3 x y^{\prime } y&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
7.857 |
|
| \begin{align*}
1+\frac {1}{1+x^{2}+4 y x +y^{2}}+\left (\frac {1}{\sqrt {y}}+\frac {1}{1+x^{2}+2 y x +y^{2}}\right ) y^{\prime }&=0 \\
\end{align*} |
[_rational] |
✗ |
✗ |
✗ |
✗ |
57.881 |
|
| \begin{align*}
x^{\prime }&=1+\cos \left (t -x\right )^{2} \\
\end{align*} |
[[_homogeneous, ‘class C‘], _dAlembert] |
✓ |
✓ |
✓ |
✗ |
3.397 |
|
| \begin{align*}
y^{3}+4 \,{\mathrm e}^{x} y+\left (2 \,{\mathrm e}^{x}+3 y^{2}\right ) y^{\prime }&=0 \\
\end{align*} | [[_1st_order, _with_linear_symmetries]] | ✓ | ✓ | ✓ | ✗ | 2.321 |
|
| \begin{align*}
y^{\prime }-\frac {y}{x}&=x^{2} \sin \left (2 x \right ) \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✓ |
2.588 |
|
| \begin{align*}
x^{\prime }-\frac {x}{-1+t}&=t^{2}+2 \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✓ |
1.914 |
|
| \begin{align*}
y^{\prime }&=2-\sqrt {2 x -y+3} \\
\end{align*} |
[[_homogeneous, ‘class C‘], _dAlembert] |
✓ |
✓ |
✓ |
✓ |
2.488 |
|
| \begin{align*}
y^{\prime }+\tan \left (x \right ) y+\sin \left (x \right )&=0 \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✓ |
1.776 |
|
| \begin{align*}
2 y+y^{\prime }&=y^{2} \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.960 |
|
| \begin{align*}
y^{\prime }&=\left (2 x +y-1\right )^{2} \\
\end{align*} |
[[_homogeneous, ‘class C‘], _Riccati] |
✓ |
✓ |
✓ |
✓ |
4.912 |
|
| \begin{align*}
x^{2}-3 y^{2}+2 x y^{\prime } y&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
64.297 |
|
| \begin{align*}
y^{\prime }+\frac {y}{x}&=-\frac {4 x}{y^{2}} \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
3.437 |
|
| \begin{align*}
y-2 x -1+\left (x +y-4\right ) y^{\prime }&=0 \\
\end{align*} |
[[_homogeneous, ‘class C‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
5.129 |
|
| \begin{align*}
2 x -2 y-8+\left (x -3 y-6\right ) y^{\prime }&=0 \\
\end{align*} |
[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
25.513 |
|
| \begin{align*}
y-x +\left (x +y\right ) y^{\prime }&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
5.941 |
|
| \begin{align*}
\sqrt {\frac {y}{x}}+\cos \left (x \right )+\left (\sqrt {\frac {x}{y}}+\sin \left (y\right )\right ) y^{\prime }&=0 \\
\end{align*} |
[NONE] |
✗ |
✗ |
✓ |
✗ |
65.737 |
|
| \begin{align*}
y \left (x -y-2\right )+x \left (-x +y+4\right ) y^{\prime }&=0 \\
\end{align*} |
[_rational, [_Abel, ‘2nd type‘, ‘class B‘]] |
✓ |
✓ |
✓ |
✗ |
12.869 |
|
| \begin{align*}
y^{\prime }+y x&=0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
2.146 |
|
| \begin{align*}
3 x -y-5+\left (x -y+1\right ) y^{\prime }&=0 \\
\end{align*} |
[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
44.882 |
|
| \begin{align*}
y^{\prime }&=\frac {x -y-1}{x +y+5} \\
\end{align*} |
[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
5.386 |
|
| \begin{align*}
4 x y^{3}-9 y^{2}+4 x y^{2}+\left (3 y^{2} x^{2}-6 y x +2 x^{2} y\right ) y^{\prime }&=0 \\
\end{align*} | [_rational, [_Abel, ‘2nd type‘, ‘class B‘]] | ✓ | ✓ | ✓ | ✗ | 132.618 |
|
| \begin{align*}
y^{\prime }&=\left (x +y+1\right )^{2}-\left (x +y-1\right )^{2} \\
\end{align*} |
[[_linear, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
1.126 |
|
| \begin{align*}
x^{3}-y+y^{\prime } x&=0 \\
y \left (1\right ) &= 3 \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✓ |
2.732 |
|
| \begin{align*}
y^{\prime }&=\frac {x}{y}+\frac {y}{x} \\
y \left (1\right ) &= -4 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
6.782 |
|
| \begin{align*}
t +x+3+x^{\prime }&=0 \\
x \left (0\right ) &= 1 \\
\end{align*} |
[[_linear, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
1.266 |
|
| \begin{align*}
y^{\prime }-\frac {2 y}{x}&=x^{2} \cos \left (x \right ) \\
y \left (\pi \right ) &= 2 \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✓ |
2.993 |
|
| \begin{align*}
2 y^{2}+4 x^{2}-x y^{\prime } y&=0 \\
y \left (1\right ) &= -2 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
7.095 |
|
| \begin{align*}
2 \cos \left (2 x +y\right )-x^{2}+\left (\cos \left (2 x +y\right )+{\mathrm e}^{y}\right ) y^{\prime }&=0 \\
y \left (1\right ) &= 0 \\
\end{align*} |
[_exact] |
✓ |
✓ |
✓ |
✗ |
3.938 |
|
| \begin{align*}
2 x -y+\left (-3+x +y\right ) y^{\prime }&=0 \\
y \left (0\right ) &= 2 \\
\end{align*} |
[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
36.448 |
|
| \begin{align*}
\sqrt {y}+\left (x^{2}+4\right ) y^{\prime }&=0 \\
y \left (0\right ) &= 4 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✗ |
4.895 |
|
| \begin{align*}
y^{\prime }-\frac {2 y}{x}&=\frac {1}{y x} \\
y \left (1\right ) &= 3 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
4.148 |
|
| \begin{align*}
y^{\prime }-4 y&=2 x y^{2} \\
y \left (0\right ) &= -4 \\
\end{align*} |
[_Bernoulli] |
✓ |
✓ |
✓ |
✓ |
2.618 |
|
| \begin{align*}
y^{\prime }&=\frac {1}{t^{2}+1}-y \\
y \left (2\right ) &= 3 \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✓ |
2.414 |
|
| \begin{align*}
y&=y^{\prime } x +2 {y^{\prime }}^{2} \\
\end{align*} |
[[_1st_order, _with_linear_symmetries], _Clairaut] |
✓ |
✓ |
✓ |
✓ |
0.261 |
|
| \begin{align*}
x {y^{\prime }}^{3}-y {y^{\prime }}^{2}+2&=0 \\
\end{align*} |
[[_1st_order, _with_linear_symmetries], _Clairaut] |
✓ |
✓ |
✓ |
✗ |
0.862 |
|
| \begin{align*}
y^{\prime }&=2 y^{{2}/{3}} \\
y \left (2\right ) &= 0 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
2.147 |
|
| \begin{align*}
y^{\prime }&=\frac {\sqrt {y^{2}+x^{2}}-x}{y} \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
✓ |
✓ |
✓ |
12.815 |
|
| \begin{align*}
y^{\prime }+a y&=Q \left (x \right ) \\
\end{align*} |
[[_linear, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
1.721 |
|
| \begin{align*}
m y^{\prime \prime }+k y&=0 \\
\end{align*} | [[_2nd_order, _missing_x]] | ✓ | ✓ | ✓ | ✓ | 2.179 |
|
| \begin{align*}
m y^{\prime \prime }+b y^{\prime }+k y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.822 |
|
| \begin{align*}
y^{\prime \prime }+6 y^{\prime }+9 y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.264 |
|
| \begin{align*}
2 y^{\prime \prime }+18 y&=0 \\
y \left (0\right ) &= 2 \\
y^{\prime }\left (0\right ) &= 3 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
2.905 |
|
| \begin{align*}
y^{\prime \prime }+6 y^{\prime }+12 y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.319 |
|
| \begin{align*}
y^{\prime \prime }+4 y&=2 \cos \left (2 t \right ) \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.550 |
|
| \begin{align*}
y^{\prime \prime }+2 y^{\prime }+4 y&=5 \sin \left (3 t \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.463 |
|
| \begin{align*}
y^{\prime \prime }+2 y^{\prime }+5 y&=-50 \sin \left (5 t \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.452 |
|
| \begin{align*}
y^{\prime \prime }+2 y^{\prime }+4 y&=6 \cos \left (2 t \right )+8 \sin \left (2 t \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.414 |
|
| \begin{align*}
m y^{\prime \prime }+b y^{\prime }+k y&=\cos \left (\omega t \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.936 |
|
| \begin{align*}
y^{\prime \prime }+\frac {y^{\prime }}{10}+25 y&=\cos \left (\omega t \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.520 |
|
| \begin{align*}
y^{\prime \prime }+25 y&=\cos \left (\omega t \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.422 |
|
| \begin{align*}
2 y^{\prime \prime }+7 y^{\prime }-4 y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.195 |
|
| \begin{align*}
y^{\prime \prime }+6 y^{\prime }+9 y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.233 |
|
| \begin{align*}
y^{\prime \prime }+5 y^{\prime }+6 y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.184 |
|
| \begin{align*}
y^{\prime \prime }-y^{\prime }-2 y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.178 |
|
| \begin{align*}
y^{\prime \prime }+8 y^{\prime }+16 y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.234 |
|
| \begin{align*}
y^{\prime \prime }-5 y^{\prime }+6 y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.180 |
|
| \begin{align*}
6 y^{\prime \prime }+y^{\prime }-2 y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.185 |
|
| \begin{align*}
z^{\prime \prime }+z^{\prime }-z&=0 \\
\end{align*} | [[_2nd_order, _missing_x]] | ✓ | ✓ | ✓ | ✓ | 0.217 |
|
| \begin{align*}
4 y^{\prime \prime }-4 y^{\prime }+y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.239 |
|
| \begin{align*}
y^{\prime \prime }-y^{\prime }-11 y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.223 |
|
| \begin{align*}
4 w^{\prime \prime }+20 w^{\prime }+25 w&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.245 |
|
| \begin{align*}
3 y^{\prime \prime }+11 y^{\prime }-7 y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.241 |
|
| \begin{align*}
y^{\prime \prime }+2 y^{\prime }-8 y&=0 \\
y \left (0\right ) &= 3 \\
y^{\prime }\left (0\right ) &= -12 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.290 |
|
| \begin{align*}
y^{\prime \prime }+y^{\prime }&=0 \\
y \left (0\right ) &= 2 \\
y^{\prime }\left (0\right ) &= 1 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
1.188 |
|
| \begin{align*}
y^{\prime \prime }-4 y^{\prime }+3 y&=0 \\
y \left (0\right ) &= 1 \\
y^{\prime }\left (0\right ) &= {\frac {1}{3}} \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.304 |
|
| \begin{align*}
y^{\prime \prime }-4 y^{\prime }-5 y&=0 \\
y \left (-1\right ) &= 3 \\
y^{\prime }\left (-1\right ) &= 9 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.332 |
|
| \begin{align*}
y^{\prime \prime }-6 y^{\prime }+9 y&=0 \\
y \left (0\right ) &= 2 \\
y^{\prime }\left (0\right ) &= {\frac {25}{3}} \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.379 |
|
| \begin{align*}
z^{\prime \prime }-2 z^{\prime }-2 z&=0 \\
z \left (0\right ) &= 0 \\
z^{\prime }\left (0\right ) &= -3 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.366 |
|
| \begin{align*}
y^{\prime \prime }+2 y^{\prime }+y&=0 \\
y \left (0\right ) &= 1 \\
y^{\prime }\left (0\right ) &= -3 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.365 |
|