2.2.74 Problems 7301 to 7400

Table 2.161: Main lookup table. Sorted sequentially by problem number.

#

ODE

CAS classification

Solved?

Maple

Mma

Sympy

time(sec)

7301

\begin{align*} y^{\prime \prime }+y&=x^{3}-1+2 \cos \left (x \right )+\left (2-4 x \right ) {\mathrm e}^{x} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.708

7302

\begin{align*} 6 y-5 y^{\prime }+y^{\prime \prime }&=2 \,{\mathrm e}^{x}+6 x -5 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.313

7303

\begin{align*} y^{\prime \prime }-y&=\sinh \left (x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.444

7304

\begin{align*} y^{\prime \prime }+y&=2 \sin \left (x \right )+4 \cos \left (x \right ) x \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.569

7305

\begin{align*} y+2 y^{\prime }+y^{\prime \prime }&=4 \,{\mathrm e}^{x}+\left (1-x \right ) \left ({\mathrm e}^{2 x}-1\right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.606

7306

\begin{align*} y^{\prime \prime }-2 y^{\prime }&=9 x \,{\mathrm e}^{-x}-6 x^{2}+4 \,{\mathrm e}^{2 x} \\ \end{align*}

[[_2nd_order, _missing_y]]

1.187

7307

\begin{align*} y^{\prime } y+y^{\prime \prime }&=0 \\ y \left (0\right ) &= 5 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], _Lagerstrom, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

0.794

7308

\begin{align*} y^{\prime } y+y^{\prime \prime }&=0 \\ y \left (0\right ) &= 2 \\ y^{\prime }\left (0\right ) &= -2 \\ \end{align*}

[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], _Lagerstrom, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

0.730

7309

\begin{align*} y^{\prime } y+y^{\prime \prime }&=0 \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= -1 \\ \end{align*}

[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], _Lagerstrom, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

0.857

7310

\begin{align*} y^{\prime } y+y^{\prime \prime }&=0 \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 2 \\ \end{align*}

[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], _Lagerstrom, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

1.172

7311

\begin{align*} y^{\prime \prime }+2 y^{\prime } x&=0 \\ \end{align*}

[[_2nd_order, _missing_y]]

0.437

7312

\begin{align*} 2 y y^{\prime \prime }&={y^{\prime }}^{2} \\ \end{align*}

[[_2nd_order, _missing_x], _Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

0.468

7313

\begin{align*} y^{\prime \prime } x&=y^{\prime }+{y^{\prime }}^{3} \\ \end{align*}

[[_2nd_order, _missing_y], [_2nd_order, _reducible, _mu_y_y1]]

0.641

7314

\begin{align*} {y^{\prime \prime }}^{2}&=k^{2} \left (1+{y^{\prime }}^{2}\right ) \\ \end{align*}

[[_2nd_order, _missing_x]]

5.678

7315

\begin{align*} k&=\frac {y^{\prime \prime }}{\left (1+y^{\prime }\right )^{{3}/{2}}} \\ \end{align*}

[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear]]

15.774

7316

\begin{align*} x^{2} y^{\prime \prime }+3 y^{\prime } x -3 y&=0 \\ \end{align*}

[[_Emden, _Fowler]]

0.723

7317

\begin{align*} x^{2} y^{\prime \prime }+y^{\prime } x -4 y&=0 \\ \end{align*}

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

0.826

7318

\begin{align*} x^{2} y^{\prime \prime }+7 y^{\prime } x +9 y&=0 \\ \end{align*}

[[_Emden, _Fowler]]

0.776

7319

\begin{align*} x^{2} y^{\prime \prime }-y^{\prime } x +6 y&=0 \\ \end{align*}

[[_Emden, _Fowler]]

1.108

7320

\begin{align*} x^{2} y^{\prime \prime }+y^{\prime } x -16 y&=8 x^{4} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1.747

7321

\begin{align*} x^{2} y^{\prime \prime }+y^{\prime } x -y&=x -\frac {1}{x} \\ \end{align*}

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

2.230

7322

\begin{align*} x^{2} y^{\prime \prime }-5 y^{\prime } x +9 y&=2 x^{3} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1.431

7323

\begin{align*} x^{2} y^{\prime \prime }-3 y^{\prime } x +4 y&=6 \ln \left (x \right ) x^{2} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

1.474

7324

\begin{align*} x^{2} y^{\prime \prime }+y&=3 x^{2} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.774

7325

\begin{align*} x^{2} y^{\prime \prime }+y^{\prime } x +y&=2 x \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1.237

7326

\begin{align*} \left (-x +2\right ) x^{2} y^{\prime \prime }+2 y^{\prime } x -2 y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.100

7327

\begin{align*} 2 y-2 y^{\prime } x +\left (x^{2}+1\right ) y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.091

7328

\begin{align*} y^{\prime \prime } x -2 \left (x +1\right ) y^{\prime }+\left (2+x \right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.096

7329

\begin{align*} 3 y^{\prime \prime } x -2 \left (3 x -1\right ) y^{\prime }+\left (3 x -2\right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.099

7330

\begin{align*} x^{2} y^{\prime \prime }+\left (x +1\right ) y^{\prime }-y&=0 \\ \end{align*}

[[_2nd_order, _exact, _linear, _homogeneous]]

0.096

7331

\begin{align*} x \left (x +1\right ) y^{\prime \prime }-\left (x -1\right ) y^{\prime }+y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.101

7332

\begin{align*} x^{2} y^{\prime }-y x&=\frac {1}{x} \\ \end{align*}

[_linear]

1.980

7333

\begin{align*} x \ln \left (y\right ) y^{\prime }-y \ln \left (x \right )&=0 \\ \end{align*}

[_separable]

2.549

7334

\begin{align*} y^{\prime \prime \prime }+2 y^{\prime \prime }+2 y^{\prime }&=0 \\ \end{align*}

[[_3rd_order, _missing_x]]

0.052

7335

\begin{align*} r^{\prime \prime }-6 r^{\prime }+9 r&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.241

7336

\begin{align*} 2 x -y \sin \left (2 x \right )&=\left (\sin \left (x \right )^{2}-2 y\right ) y^{\prime } \\ \end{align*}

[_exact, [_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], [_Abel, ‘2nd type‘, ‘class A‘]]

4.318

7337

\begin{align*} y^{\prime \prime }+2 y^{\prime }+2 y&=10 \,{\mathrm e}^{x}+6 \,{\mathrm e}^{-x} \cos \left (x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.513

7338

\begin{align*} 3 x^{3} y^{2} y^{\prime }-x^{2} y^{3}&=1 \\ \end{align*}

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

3.108

7339

\begin{align*} x^{2} y^{\prime \prime }-y^{\prime } x +y&=x \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1.418

7340

\begin{align*} y^{\prime }-2 y-y^{2} {\mathrm e}^{3 x}&=0 \\ \end{align*}

[[_1st_order, _with_linear_symmetries], _Bernoulli]

1.524

7341

\begin{align*} u \left (1-v \right )+v^{2} \left (1-u\right ) u^{\prime }&=0 \\ \end{align*}

[_separable]

3.731

7342

\begin{align*} y+2 x -y^{\prime } x&=0 \\ \end{align*}

[_linear]

2.185

7343

\begin{align*} y^{\prime \prime } x +y^{\prime }&=4 x \\ \end{align*}

[[_2nd_order, _missing_y]]

0.816

7344

\begin{align*} 5 y+4 y^{\prime }+y^{\prime \prime }&=26 \,{\mathrm e}^{3 x} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.335

7345

\begin{align*} 5 y+4 y^{\prime }+y^{\prime \prime }&=2 \cos \left (x \right ) {\mathrm e}^{-2 x} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.352

7346

\begin{align*} y^{\prime \prime }-4 y^{\prime }+4 y&=6 \,{\mathrm e}^{2 x} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.362

7347

\begin{align*} 6 y-5 y^{\prime }+y^{\prime \prime }&={\mathrm e}^{2 x} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.280

7348

\begin{align*} \left (2 x +y\right ) y^{\prime }-x +2 y&=0 \\ \end{align*}

[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

4.950

7349

\begin{align*} \left (x \cos \left (y\right )-{\mathrm e}^{-\sin \left (y\right )}\right ) y^{\prime }+1&=0 \\ \end{align*}

[[_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]]

2.424

7350

\begin{align*} y^{\prime } \sin \left (x \right )^{2}+\sin \left (x \right )^{2}+\left (x +y\right ) \sin \left (2 x \right )&=0 \\ \end{align*}

[_linear]

4.594

7351

\begin{align*} y^{\prime \prime }-2 y^{\prime }+5 y&=5 x +4 \,{\mathrm e}^{x} \left (1+\sin \left (2 x \right )\right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

1.480

7352

\begin{align*} y^{\prime }+y x&=\frac {x}{y} \\ \end{align*}

[_separable]

2.142

7353

\begin{align*} y^{\prime \prime \prime \prime }-2 y^{\prime \prime \prime }+13 y^{\prime \prime }-18 y^{\prime }+36 y&=0 \\ \end{align*}

[[_high_order, _missing_x]]

0.069

7354

\begin{align*} \sin \left (\theta \right ) \cos \left (\theta \right ) r^{\prime }-\sin \left (\theta \right )^{2}&=r \cos \left (\theta \right )^{2} \\ \end{align*}

[_linear]

3.078

7355

\begin{align*} x \left (y y^{\prime \prime }+{y^{\prime }}^{2}\right )&=y^{\prime } y \\ \end{align*}

[[_2nd_order, _exact, _nonlinear], _Liouville, [_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

0.686

7356

\begin{align*} 3 x^{2} y+x^{3} y^{\prime }&=0 \\ y \left (1\right ) &= 2 \\ \end{align*}

[_separable]

2.668

7357

\begin{align*} -y+y^{\prime } x&=x^{2} \\ y \left (2\right ) &= 6 \\ \end{align*}

[_linear]

3.531

7358

\begin{align*} y^{\prime \prime }+y^{\prime }-6 y&=6 \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= 4 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.367

7359

\begin{align*} y y^{\prime \prime }+{y^{\prime }}^{2}+4&=0 \\ y \left (1\right ) &= 3 \\ y^{\prime }\left (1\right ) &= 0 \\ \end{align*}

[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

1.573

7360

\begin{align*} y^{\prime } x&=y x +y \\ \end{align*}
Series expansion around \(x=0\).

[_separable]

0.244

7361

\begin{align*} y^{\prime } x&=y x +y \\ \end{align*}

[_separable]

1.040

7362

\begin{align*} y^{\prime }&=3 x^{2} y \\ \end{align*}
Series expansion around \(x=0\).

[_separable]

0.236

7363

\begin{align*} y^{\prime }&=3 x^{2} y \\ \end{align*}

[_separable]

1.838

7364

\begin{align*} y^{\prime } x&=y \\ \end{align*}
Series expansion around \(x=0\).

[_separable]

0.165

7365

\begin{align*} y^{\prime } x&=y \\ \end{align*}

[_separable]

1.721

7366

\begin{align*} y^{\prime \prime }&=-4 y \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _missing_x]]

0.277

7367

\begin{align*} y^{\prime \prime }&=-4 y \\ \end{align*}

[[_2nd_order, _missing_x]]

1.178

7368

\begin{align*} y^{\prime \prime }&=y \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _missing_x]]

0.244

7369

\begin{align*} y^{\prime \prime }&=y \\ \end{align*}

[[_2nd_order, _missing_x]]

1.026

7370

\begin{align*} y-2 y^{\prime }+y^{\prime \prime }&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _missing_x]]

0.372

7371

\begin{align*} y-2 y^{\prime }+y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.210

7372

\begin{align*} x^{2} y^{\prime \prime }-3 y^{\prime } x +3 y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_Emden, _Fowler]]

0.493

7373

\begin{align*} x^{2} y^{\prime \prime }-3 y^{\prime } x +3 y&=0 \\ \end{align*}

[[_Emden, _Fowler]]

1.105

7374

\begin{align*} \left (x^{2}+2 x \right ) y^{\prime \prime }-2 \left (x +1\right ) y^{\prime }+2 y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _with_linear_symmetries]]

0.684

7375

\begin{align*} \left (x^{2}+2 x \right ) y^{\prime \prime }-2 \left (x +1\right ) y^{\prime }+2 y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.645

7376

\begin{align*} 2 y-2 y^{\prime } x +\left (x^{2}+1\right ) y^{\prime \prime }&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _with_linear_symmetries]]

0.243

7377

\begin{align*} 2 y-2 y^{\prime } x +\left (x^{2}+1\right ) y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.645

7378

\begin{align*} y^{\prime \prime }-4 y^{\prime } x +\left (4 x^{2}-2\right ) y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _with_linear_symmetries]]

0.351

7379

\begin{align*} y^{\prime \prime }-4 y^{\prime } x +\left (4 x^{2}-2\right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.322

7380

\begin{align*} y^{\prime }-\sin \left (x +y\right )&=0 \\ \end{align*}

[[_homogeneous, ‘class C‘], _dAlembert]

1.822

7381

\begin{align*} y^{\prime }&=4 y^{2}-3 y+1 \\ \end{align*}

[_quadrature]

0.296

7382

\begin{align*} s^{\prime }&=t \ln \left (s^{2 t}\right )+8 t^{2} \\ \end{align*}

[‘y=_G(x,y’)‘]

3.354

7383

\begin{align*} y^{\prime }&=\frac {y \,{\mathrm e}^{x +y}}{x^{2}+2} \\ \end{align*}

[_separable]

2.335

7384

\begin{align*} \left (x y^{2}+3 y^{2}\right ) y^{\prime }-2 x&=0 \\ \end{align*}

[_separable]

1.838

7385

\begin{align*} s^{2}+s^{\prime }&=\frac {s+1}{s t} \\ \end{align*}

[_rational, [_Abel, ‘2nd type‘, ‘class C‘]]

8.305

7386

\begin{align*} y^{\prime } x&=\frac {1}{y^{3}} \\ \end{align*}

[_separable]

2.242

7387

\begin{align*} x^{\prime }&=3 t^{2} x \\ \end{align*}

[_separable]

1.981

7388

\begin{align*} x^{\prime }&=\frac {t \,{\mathrm e}^{-t -2 x}}{x} \\ \end{align*}

[_separable]

2.036

7389

\begin{align*} y^{\prime }&=\frac {x}{y^{2} \sqrt {x +1}} \\ \end{align*}

[_separable]

2.181

7390

\begin{align*} x v^{\prime }&=\frac {1-4 v^{2}}{3 v} \\ \end{align*}

[_separable]

5.564

7391

\begin{align*} y^{\prime }&=\frac {\sec \left (y\right )^{2}}{x^{2}+1} \\ \end{align*}

[_separable]

3.204

7392

\begin{align*} y^{\prime }&=3 x^{2} \left (1+y^{2}\right )^{{3}/{2}} \\ \end{align*}

[_separable]

8.778

7393

\begin{align*} x^{\prime }-x^{3}&=x \\ \end{align*}

[_quadrature]

1.452

7394

\begin{align*} x +x y^{2}+{\mathrm e}^{x^{2}} y y^{\prime }&=0 \\ \end{align*}

[_separable]

3.138

7395

\begin{align*} \frac {y^{\prime }}{y}+y \,{\mathrm e}^{\cos \left (x \right )} \sin \left (x \right )&=0 \\ \end{align*}

[_separable]

3.148

7396

\begin{align*} y^{\prime }&=\left (1+y^{2}\right ) \tan \left (x \right ) \\ y \left (0\right ) &= \sqrt {3} \\ \end{align*}

[_separable]

5.653

7397

\begin{align*} y^{\prime }&=x^{3} \left (1-y\right ) \\ y \left (0\right ) &= 3 \\ \end{align*}

[_separable]

2.043

7398

\begin{align*} \frac {y^{\prime }}{2}&=\sqrt {1+y}\, \cos \left (x \right ) \\ y \left (\pi \right ) &= 0 \\ \end{align*}

[_separable]

3.567

7399

\begin{align*} x^{2} y^{\prime }&=\frac {4 x^{2}-x -2}{\left (x +1\right ) \left (1+y\right )} \\ y \left (1\right ) &= 1 \\ \end{align*}

[_separable]

5.197

7400

\begin{align*} \frac {y^{\prime }}{\theta }&=\frac {y \sin \left (\theta \right )}{y^{2}+1} \\ y \left (\pi \right ) &= 1 \\ \end{align*}

[_separable]

3.968