2.2.66 Problems 6501 to 6600

Table 2.145: Main lookup table. Sorted sequentially by problem number.

#

ODE

CAS classification

Solved?

Maple

Mma

Sympy

time(sec)

6501

\begin{align*} f \left (x \right )+a y y^{\prime }+x {y^{\prime }}^{2}+x y y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _exact, _nonlinear], [_2nd_order, _reducible, _mu_xy]]

0.562

6502

\begin{align*} x y y^{\prime \prime }&=x y^{3}+a y y^{\prime }+x {y^{\prime }}^{2} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.155

6503

\begin{align*} x y y^{\prime \prime }&=b^{2} x y^{3}+a y y^{\prime }+x {y^{\prime }}^{2} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.167

6504

\begin{align*} y^{\prime } y+2 x {y^{\prime }}^{2}+x y y^{\prime \prime }&=0 \\ \end{align*}

[_Liouville, [_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

0.350

6505

\begin{align*} y^{\prime } y-2 x {y^{\prime }}^{2}+x y y^{\prime \prime }&=0 \\ \end{align*}

[_Liouville, [_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

0.180

6506

\begin{align*} -y^{\prime } y-2 x {y^{\prime }}^{2}+x y y^{\prime \prime }&=0 \\ \end{align*}

[_Liouville, [_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

0.198

6507

\begin{align*} x y y^{\prime \prime }&=-\left (1+y\right ) y^{\prime }+2 x {y^{\prime }}^{2} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

0.375

6508

\begin{align*} a y y^{\prime }+2 x {y^{\prime }}^{2}+x y y^{\prime \prime }&=0 \\ \end{align*}

[_Liouville, [_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

0.545

6509

\begin{align*} a y y^{\prime }-2 x {y^{\prime }}^{2}+x y y^{\prime \prime }&=0 \\ \end{align*}

[_Liouville, [_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

0.234

6510

\begin{align*} 4 y^{\prime } y-4 x {y^{\prime }}^{2}+x y y^{\prime \prime }&=0 \\ \end{align*}

[_Liouville, [_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

0.392

6511

\begin{align*} a y^{\prime } \left (-y+y^{\prime } x \right )+x y y^{\prime \prime }&=0 \\ \end{align*}

[_Liouville, [_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

0.217

6512

\begin{align*} \left (x -y\right ) y^{\prime }+x {y^{\prime }}^{2}+x \left (x +y\right ) y^{\prime \prime }&=y \\ \end{align*}

[[_2nd_order, _exact, _nonlinear], [_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_y_y1], [_2nd_order, _reducible, _mu_xy]]

0.729

6513

\begin{align*} 2 x y y^{\prime \prime }&=-y^{\prime } y+x {y^{\prime }}^{2} \\ \end{align*}

[_Liouville, [_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

0.256

6514

\begin{align*} x^{2}+2 y+4 \left (x +y\right ) y^{\prime }+2 x {y^{\prime }}^{2}+x \left (x +2 y\right ) y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _exact, _nonlinear], [_2nd_order, _reducible, _mu_xy]]

0.524

6515

\begin{align*} \left (-y+y^{\prime } x \right )^{2}+x^{2} y y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_y_y1], [_2nd_order, _reducible, _mu_xy]]

0.464

6516

\begin{align*} \left (-y+y^{\prime } x \right )^{2}+x^{2} y y^{\prime \prime }&=3 y^{2} \\ \end{align*}

[[_2nd_order, _exact, _nonlinear], [_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_xy]]

0.658

6517

\begin{align*} x^{2} y y^{\prime \prime }&=a y^{2}+a x y y^{\prime }+2 x^{2} {y^{\prime }}^{2} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_y_y1], [_2nd_order, _reducible, _mu_xy]]

0.497

6518

\begin{align*} c y^{2}+b x y y^{\prime }+a \,x^{2} {y^{\prime }}^{2}+x^{2} y y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_xy]]

0.509

6519

\begin{align*} 2 \left (1-y\right )^{2} y-2 x \left (1-y\right ) y^{\prime }+2 x^{2} {y^{\prime }}^{2}+x^{2} \left (1-y\right ) y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_y_y1], [_2nd_order, _reducible, _mu_xy]]

0.909

6520

\begin{align*} x^{2} \left (x -y\right ) y^{\prime \prime }&=\left (-y+y^{\prime } x \right )^{2} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_xy]]

0.780

6521

\begin{align*} \left (-y+y^{\prime } x \right )^{2}+x^{2} \left (x -y\right ) y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_xy]]

0.665

6522

\begin{align*} x^{2} \left (x -y\right ) y^{\prime \prime }&=a \left (-y+y^{\prime } x \right )^{2} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_xy]]

0.743

6523

\begin{align*} 2 x^{2} y y^{\prime \prime }&=-y^{2}+x^{2} {y^{\prime }}^{2} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_xy]]

0.409

6524

\begin{align*} 2 x^{2} y y^{\prime \prime }&=-4 y^{2}+2 x y^{\prime } y+x^{2} {y^{\prime }}^{2} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_y_y1], [_2nd_order, _reducible, _mu_xy]]

0.476

6525

\begin{align*} 3 x y^{2}+6 x^{2} y y^{\prime }+x^{3} {y^{\prime }}^{2}+x^{3} y y^{\prime \prime }&=a \\ \end{align*}

[[_2nd_order, _exact, _nonlinear], [_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_xy]]

0.512

6526

\begin{align*} x \left (x +1\right )^{2} y y^{\prime \prime }&=a \left (2+x \right ) y^{2}-2 \left (x^{2}+1\right ) y y^{\prime }+x \left (x +1\right )^{2} {y^{\prime }}^{2} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_xy]]

0.759

6527

\begin{align*} 3 x y^{2}-12 x^{2} y y^{\prime }+4 \left (-x^{3}+1\right ) {y^{\prime }}^{2}+8 \left (-x^{3}+1\right ) y y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_xy]]

0.796

6528

\begin{align*} \sqrt {a^{2}+x^{2}}\, \left (b {y^{\prime }}^{2}+y y^{\prime \prime }\right )&=y^{\prime } y \\ \end{align*}

[_Liouville, [_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

0.468

6529

\begin{align*} \sqrt {a^{2}-x^{2}}\, \left (-y^{\prime } y-x {y^{\prime }}^{2}+x y y^{\prime \prime }\right )&=b x {y^{\prime }}^{2} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.846

6530

\begin{align*} \operatorname {f3} \left (x \right ) y^{2}+\operatorname {f2} \left (x \right ) y y^{\prime }+\operatorname {f1} \left (x \right ) {y^{\prime }}^{2}+\operatorname {f0} \left (x \right ) y y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.276

6531

\begin{align*} 4 f \left (x \right ) y y^{\prime \prime }&=4 f \left (x \right )^{2} y+3 f \left (x \right ) g \left (x \right ) y^{2}-f \left (x \right ) y^{4}+2 y^{3} f^{\prime }\left (x \right )+\left (-6 f \left (x \right ) y^{2}+2 f^{\prime }\left (x \right )\right ) y^{\prime }+3 f \left (x \right ) {y^{\prime }}^{2} \\ \end{align*}

[NONE]

0.332

6532

\begin{align*} y^{2} y^{\prime \prime }&=a \\ \end{align*}

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

61.667

6533

\begin{align*} a x +y {y^{\prime }}^{2}+y^{2} y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.267

6534

\begin{align*} y {y^{\prime }}^{2}+y^{2} y^{\prime \prime }&=b x +a \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.148

6535

\begin{align*} \left (1-2 y\right ) {y^{\prime }}^{2}+\left (1+y^{2}\right ) y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _missing_x], _Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

1.319

6536

\begin{align*} \left (1+y^{2}\right ) y^{\prime \prime }&=3 y {y^{\prime }}^{2} \\ \end{align*}

[[_2nd_order, _missing_x], _Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

0.354

6537

\begin{align*} \left (1+y^{2}\right ) y^{\prime \prime }&=\left (a +3 y\right ) {y^{\prime }}^{2} \\ \end{align*}

[[_2nd_order, _missing_x], _Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

0.664

6538

\begin{align*} y^{\prime } \left (1+{y^{\prime }}^{2}\right )+\left (1+y^{2}\right ) y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

12.917

6539

\begin{align*} 2 y^{\prime }+2 y {y^{\prime }}^{2}+\left (x +y^{2}\right ) y^{\prime \prime }&=a \\ \end{align*}

[[_2nd_order, _exact, _nonlinear], [_2nd_order, _reducible, _mu_xy]]

0.358

6540

\begin{align*} \left (x +y^{2}\right ) y^{\prime \prime }&=2 \left (x -y^{2}\right ) {y^{\prime }}^{3}-y^{\prime } \left (1+4 y^{\prime } y\right ) \\ \end{align*}

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_y_y1]]

0.546

6541

\begin{align*} \left (y^{2}+x^{2}\right ) y^{\prime \prime }&=\left (1+y^{2}\right ) \left (-y+y^{\prime } x \right ) \\ \end{align*}

[NONE]

0.161

6542

\begin{align*} \left (y^{2}+x^{2}\right ) y^{\prime \prime }&=2 \left (1+y^{2}\right ) \left (-y+y^{\prime } x \right ) \\ \end{align*}

[NONE]

0.175

6543

\begin{align*} 2 \left (1-y\right ) y y^{\prime \prime }&=\left (1-2 y\right ) {y^{\prime }}^{2} \\ \end{align*}

[[_2nd_order, _missing_x], _Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

0.556

6544

\begin{align*} 2 \left (1-y\right ) y y^{\prime \prime }&=f \left (x \right ) \left (1-y\right ) y y^{\prime }+\left (1-2 y\right ) {y^{\prime }}^{2} \\ \end{align*}

[_Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

0.556

6545

\begin{align*} 2 \left (1-y\right ) y y^{\prime \prime }&=\left (1-3 y\right ) {y^{\prime }}^{2} \\ \end{align*}

[[_2nd_order, _missing_x], _Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

0.813

6546

\begin{align*} 2 \left (1-y\right ) y y^{\prime \prime }&=4 y \left (f \left (x \right )+g \left (x \right ) y\right ) y^{\prime }+\left (1-3 y\right ) {y^{\prime }}^{2} \\ \end{align*}

[NONE]

0.307

6547

\begin{align*} 2 \left (1-y\right ) y y^{\prime \prime }&=-\left (1-y\right )^{3} \left (\operatorname {F0} \left (x \right )^{2}-\operatorname {G0} \left (x \right )^{2} y^{2}\right )-4 \left (1-y\right ) y^{2} \left (f \left (x \right )^{2}-g \left (x \right )^{2}+f^{\prime }\left (x \right )+g^{\prime }\left (x \right )\right )-4 y \left (f \left (x \right )+g \left (x \right ) y\right ) y^{\prime }+\left (1-3 y\right ) {y^{\prime }}^{2} \\ \end{align*}

[NONE]

0.611

6548

\begin{align*} 3 \left (1-y\right ) y y^{\prime \prime }&=2 \left (1-2 y\right ) {y^{\prime }}^{2} \\ \end{align*}

[[_2nd_order, _missing_x], _Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

0.264

6549

\begin{align*} 4 \left (1-y\right ) y y^{\prime \prime }&=3 \left (1-2 y\right ) {y^{\prime }}^{2} \\ \end{align*}

[[_2nd_order, _missing_x], _Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

0.270

6550

\begin{align*} x y^{2} y^{\prime \prime }&=a \\ \end{align*}

[[_Emden, _Fowler], [_2nd_order, _with_linear_symmetries]]

0.273

6551

\begin{align*} x y^{2} y^{\prime \prime }&=\left (a -y^{2}\right ) y^{\prime }+x y {y^{\prime }}^{2} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_xy]]

0.386

6552

\begin{align*} x^{2} y^{2} y^{\prime \prime }&=\left (y^{2}+x^{2}\right ) \left (-y+y^{\prime } x \right ) \\ \end{align*}

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_y_y1], [_2nd_order, _reducible, _mu_xy]]

0.642

6553

\begin{align*} \left (a^{2}-x^{2}\right ) y {y^{\prime }}^{2}+\left (a^{2}-x^{2}\right ) \left (a^{2}-y^{2}\right ) y^{\prime \prime }&=x \left (a^{2}-y^{2}\right ) y^{\prime } \\ \end{align*}

[_Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

1.170

6554

\begin{align*} \operatorname {a2} x \left (1-y\right ) y^{2}+\operatorname {a3} \,x^{3} y^{2} \left (1+y\right )+\left (1-y\right )^{3} \left (\operatorname {a0} +\operatorname {a1} y^{2}\right )+2 x \left (1-y\right ) y y^{\prime }-x^{2} \left (1-3 y\right ) {y^{\prime }}^{2}+2 x^{2} \left (1-y\right ) y y^{\prime \prime }&=0 \\ \end{align*}

[NONE]

0.362

6555

\begin{align*} \left (x +y\right ) \left (-y+y^{\prime } x \right )^{3}+x^{3} y^{2} y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1.408

6556

\begin{align*} y^{3} y^{\prime \prime }&=a^{2} \\ \end{align*}

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

1.057

6557

\begin{align*} \left (1-3 y^{2}\right ) {y^{\prime }}^{2}+y \left (1+y^{2}\right ) y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _missing_x], _Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

0.842

6558

\begin{align*} y^{2} {y^{\prime }}^{2}+2 y^{3} y^{\prime \prime }&=2 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.579

6559

\begin{align*} \left (-\left (1-y\right ) \left (-y+a \right )+y \left (1-y\right )+\left (-y+a \right ) y\right ) {y^{\prime }}^{2}+2 \left (1-y\right ) \left (-y+a \right ) y y^{\prime \prime }&=\operatorname {a3} \left (1-y\right )^{2} \left (-y+a \right )^{2}+\operatorname {a1} \left (1-y\right )^{2} y^{2}+\operatorname {a2} \left (-y+a \right )^{2} y^{2}+\operatorname {a0} \left (-y+a \right )^{2} y^{2} \left (1-y^{2}\right ) \\ \end{align*}

[[_2nd_order, _missing_x]]

1.249

6560

\begin{align*} \left (\left (-y+a \right ) \left (-y+b \right )+\left (-y+a \right ) \left (c -y\right )+\left (-y+b \right ) \left (c -y\right )\right ) {y^{\prime }}^{2}+2 \left (-y+a \right ) \left (-y+b \right ) \left (c -y\right ) y^{\prime \prime }&=\operatorname {a3} \left (-y+a \right )^{2} \left (-y+b \right )^{2}+2 \operatorname {a2} \left (-y+a \right )^{2} \left (c -y\right )^{2}+\operatorname {a1} \left (-y+b \right )^{2} \left (c -y\right )^{2}+\operatorname {a0} \left (-y+a \right )^{2} \left (-y+b \right )^{2} \left (c -y\right )^{2} \\ \end{align*}

[[_2nd_order, _missing_x]]

4.405

6561

\begin{align*} 2 \left (1-x \right ) x \left (1-y\right ) \left (x -y\right ) y y^{\prime \prime }&=-y^{2} \left (1-y^{2}\right )+2 \left (1-y\right ) y \left (x^{2}+y-2 y x \right ) y^{\prime }+\left (1-x \right ) x \left (x -2 y-2 y x +3 y^{2}\right ) {y^{\prime }}^{2} \\ \end{align*}

[NONE]

0.484

6562

\begin{align*} 2 \left (1-x \right ) x \left (1-y\right ) \left (x -y\right ) y y^{\prime \prime }&=f \left (x \right ) \left (\left (1-y\right ) \left (x -y\right ) y\right )^{{3}/{2}}-y^{2} \left (1-y^{2}\right )+2 \left (1-y\right ) y \left (x^{2}+y-2 y x \right ) y^{\prime }+\left (1-x \right ) x \left (x -2 y-2 y x +3 y^{2}\right ) {y^{\prime }}^{2} \\ \end{align*}

unknown

0.885

6563

\begin{align*} 2 \left (1-x \right )^{2} x^{2} \left (1-y\right ) \left (x -y\right ) y y^{\prime \prime }&=\operatorname {a0} x \left (1-y\right )^{2} \left (x -y\right )^{2}+\left (-1+\operatorname {a2} \right ) \left (1-x \right ) x \left (1-y\right )^{2} y^{2}+\operatorname {a1} \left (1-x \right ) \left (x -y\right )^{2} y^{2}+\operatorname {a3} \left (1-y\right )^{2} \left (x -y\right )^{2} y^{2}+2 \left (1-x \right ) x \left (1-y\right )^{2} y \left (x^{2}+y-2 y x \right ) y^{\prime }+\left (1-x \right )^{2} x^{2} \left (x -2 y-2 y x +3 y^{2}\right ) {y^{\prime }}^{2} \\ \end{align*}

[NONE]

1.446

6564

\begin{align*} y \left (1+a^{2}-2 a^{2} y^{2}\right )+b \sqrt {\left (1-y^{2}\right ) \left (1-a^{2} y^{2}\right )}\, {y^{\prime }}^{2}+\left (1-y^{2}\right ) \left (1-a^{2} y^{2}\right ) y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

27.697

6565

\begin{align*} a^{2} y+\left (y^{2}+x^{2}\right )^{2} y^{\prime \prime }&=0 \\ \end{align*}

[NONE]

0.524

6566

\begin{align*} A y+\left (a +2 b x +c \,x^{2}+y^{2}\right )^{2} y^{\prime \prime }&=0 \\ \end{align*}

[NONE]

0.724

6567

\begin{align*} \operatorname {f3} \left (y\right )+\operatorname {f2} \left (y\right ) y^{\prime }+\operatorname {f1} \left (y\right ) {y^{\prime }}^{2}+\operatorname {f0} \left (y\right ) y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

5.112

6568

\begin{align*} \sqrt {y}\, y^{\prime \prime }&=a \\ \end{align*}

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

0.659

6569

\begin{align*} \sqrt {y}\, y^{\prime \prime }&=2 b x +2 a \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.299

6570

\begin{align*} X \left (x , y\right )^{3} y^{\prime \prime }&=1 \\ \end{align*}

[NONE]

0.125

6571

\begin{align*} \left (1+\ln \left (y\right )\right ) {y^{\prime }}^{2}+\left (1-\ln \left (y\right )\right ) y y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _missing_x], _Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

0.448

6572

\begin{align*} y^{\prime } y^{\prime \prime }&=a^{2} x \\ \end{align*}

[[_2nd_order, _missing_y], [_2nd_order, _exact, _nonlinear], [_2nd_order, _reducible, _mu_y_y1], [_2nd_order, _reducible, _mu_poly_yn]]

4.351

6573

\begin{align*} y^{\prime } y^{\prime \prime }&=x y^{2}+x^{2} y y^{\prime } \\ \end{align*}

[[_2nd_order, _exact, _nonlinear], [_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_y_y1], [_2nd_order, _reducible, _mu_poly_yn]]

9.580

6574

\begin{align*} a y^{2}+x^{3} y^{\prime } y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.585

6575

\begin{align*} \operatorname {f5} y^{2}+\operatorname {f4} y y^{\prime }+\operatorname {f3} {y^{\prime }}^{2}+\operatorname {f2} y y^{\prime \prime }+\operatorname {f1} y^{\prime } y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

3.529

6576

\begin{align*} 3 y y^{\prime } y^{\prime \prime }&=-1+{y^{\prime }}^{3} \\ \end{align*}

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

5.175

6577

\begin{align*} \left (x -{y^{\prime }}^{2}\right ) y^{\prime \prime }&=x^{2}-y^{\prime } \\ \end{align*}

[[_2nd_order, _missing_y], [_2nd_order, _exact, _nonlinear], [_2nd_order, _reducible, _mu_poly_yn]]

110.177

6578

\begin{align*} y^{3}+\left ({y^{\prime }}^{2}+y^{2}\right ) y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

185.286

6579

\begin{align*} \left ({y^{\prime }}^{2}+a \left (-y+y^{\prime } x \right )\right ) y^{\prime \prime }&=b \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.615

6580

\begin{align*} 4 y {y^{\prime }}^{2} y^{\prime \prime }&=3+{y^{\prime }}^{4} \\ \end{align*}

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

2.945

6581

\begin{align*} h \left (x \right )+g \left (y\right ) y^{\prime }+f \left (y^{\prime }\right ) y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _exact, _nonlinear], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_y_y1]]

0.319

6582

\begin{align*} {y^{\prime \prime }}^{2}&=a +b y \\ \end{align*}

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

0.033

6583

\begin{align*} {y^{\prime \prime }}^{2}&=a +b {y^{\prime }}^{2} \\ \end{align*}

[[_2nd_order, _missing_x]]

4.185

6584

\begin{align*} y^{\prime }-y^{\prime \prime } x +{y^{\prime \prime }}^{2}&=0 \\ \end{align*}

[[_2nd_order, _missing_y]]

0.257

6585

\begin{align*} a^{2} {y^{\prime \prime }}^{2}&=\left (1+{y^{\prime }}^{2}\right )^{3} \\ \end{align*}

[[_2nd_order, _missing_x]]

24.763

6586

\begin{align*} a x -2 y^{\prime } y^{\prime \prime }+x {y^{\prime \prime }}^{2}&=0 \\ \end{align*}

[[_2nd_order, _missing_y]]

0.395

6587

\begin{align*} \left (-y^{\prime }+y^{\prime \prime } x \right )^{2}&=1+{y^{\prime \prime }}^{2} \\ \end{align*}

[[_2nd_order, _missing_y]]

0.638

6588

\begin{align*} 2 \left (x -y^{\prime }\right ) y^{\prime }-x \left (x +4 y^{\prime }\right ) y^{\prime \prime }+2 \left (x^{2}+1\right ) {y^{\prime \prime }}^{2}&=2 y \\ \end{align*}

[NONE]

0.056

6589

\begin{align*} 4 {y^{\prime }}^{2}-2 \left (y+3 y^{\prime } x \right ) y^{\prime \prime }+3 x^{2} {y^{\prime \prime }}^{2}&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

3.678

6590

\begin{align*} 6 y y^{\prime \prime }-6 \left (1-6 x \right ) x y^{\prime } y^{\prime \prime }+\left (2-9 x \right ) x^{2} {y^{\prime \prime }}^{2}&=36 x {y^{\prime }}^{2} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

36.395

6591

\begin{align*} h y^{2}+\operatorname {g1} y y^{\prime }+\operatorname {g0} {y^{\prime }}^{2}+\operatorname {f2} y y^{\prime \prime }+\operatorname {f1} y^{\prime } y^{\prime \prime }+\operatorname {f0} {y^{\prime \prime }}^{2}&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.046

6592

\begin{align*} -{y^{\prime }}^{2}+4 y {y^{\prime }}^{3}+y y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_y_y1]]

0.479

6593

\begin{align*} \left (1+{y^{\prime }}^{2}+y y^{\prime \prime }\right )^{2}&=\left (1+{y^{\prime }}^{2}\right )^{3} \\ \end{align*}

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

0.826

6594

\begin{align*} {y^{\prime }}^{2} \left (1-b^{2} {y^{\prime }}^{2}\right )+2 b^{2} y {y^{\prime }}^{2} y^{\prime \prime }+\left (a^{2}-b^{2} y^{2}\right ) {y^{\prime \prime }}^{2}&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.924

6595

\begin{align*} \left (y^{2}-x^{2} {y^{\prime }}^{2}+x^{2} y y^{\prime \prime }\right )^{2}&=4 x y \left (-y+y^{\prime } x \right )^{3} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.069

6596

\begin{align*} {y^{\prime \prime }}^{3}&=12 y^{\prime } \left (-2 y^{\prime }+y^{\prime \prime } x \right ) \\ \end{align*}

[[_2nd_order, _missing_y]]

0.489

6597

\begin{align*} f \left (y^{\prime \prime }\right )+y^{\prime \prime } x&=y^{\prime } \\ \end{align*}

[[_2nd_order, _missing_y]]

0.252

6598

\begin{align*} f \left (\frac {y^{\prime \prime }}{y^{\prime }}\right ) y^{\prime }&={y^{\prime }}^{2}-y y^{\prime \prime } \\ \end{align*}

[[_2nd_order, _missing_x]]

0.630

6599

\begin{align*} f \left (y^{\prime \prime }, y^{\prime }-y^{\prime \prime } x , y-y^{\prime } x +\frac {x^{2} y^{\prime \prime }}{2}\right )&=0 \\ \end{align*}

[NONE]

22.082

6600

\begin{align*} y^{\prime \prime \prime }&=0 \\ \end{align*}

[[_3rd_order, _quadrature]]

0.030