2.2.64 Problems 6301 to 6400

Table 2.141: Main lookup table. Sorted sequentially by problem number.

#

ODE

CAS classification

Solved?

Maple

Mma

Sympy

time(sec)

6301

\begin{align*} y^{\prime \prime }&=a +b x +c y^{2} \\ \end{align*}

[NONE]

0.243

6302

\begin{align*} y^{\prime \prime }&=2 y^{3} \\ \end{align*}

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

4.543

6303

\begin{align*} y^{\prime \prime }&=a +b y+2 y^{3} \\ \end{align*}

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

2.761

6304

\begin{align*} y^{\prime \prime }&=a +y x +2 y^{3} \\ \end{align*}

[[_Painleve, ‘2nd‘]]

0.228

6305

\begin{align*} y^{\prime \prime }&=f \left (x \right )+g \left (x \right ) y+2 y^{3} \\ \end{align*}

[NONE]

0.298

6306

\begin{align*} y^{\prime \prime }&=a -2 a b x y+2 b^{2} y^{3} \\ \end{align*}

[NONE]

0.201

6307

\begin{align*} y^{\prime \prime }&=\operatorname {a0} +\operatorname {a2} y+\operatorname {a1} x y+\operatorname {a3} y^{3} \\ \end{align*}

[NONE]

0.264

6308

\begin{align*} y^{\prime \prime }&=\operatorname {a0} +\operatorname {a1} y+\operatorname {a2} y^{2}+\operatorname {a3} y^{3} \\ \end{align*}

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

4.241

6309

\begin{align*} a \,x^{r} y^{s}+y^{\prime \prime }&=0 \\ \end{align*}

[[_Emden, _Fowler], [_2nd_order, _with_linear_symmetries]]

0.249

6310

\begin{align*} a \sin \left (y\right )+y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

44.401

6311

\begin{align*} a \,{\mathrm e}^{y}+y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

6.769

6312

\begin{align*} y^{\prime \prime }&=f \left (y\right ) \\ \end{align*}

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

1.915

6313

\begin{align*} y \left (2 f \left (x \right )^{2}+f^{\prime }\left (x \right )\right )+3 f \left (x \right ) y^{\prime }+y^{\prime \prime }&=2 y^{3} \\ \end{align*}

[NONE]

0.329

6314

\begin{align*} y^{\prime } y+y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], _Lagerstrom, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

0.761

6315

\begin{align*} y^{\prime } y+y^{\prime \prime }&=y^{3} \\ \end{align*}

[[_2nd_order, _missing_x]]

56.839

6316

\begin{align*} a y+y^{\prime } y+y^{\prime \prime }&=y^{3} \\ \end{align*}

[[_2nd_order, _missing_x]]

23.438

6317

\begin{align*} y^{\prime } y+y^{\prime \prime }&=-12 f \left (x \right ) y+y^{3}+12 f^{\prime }\left (x \right ) \\ \end{align*}

[NONE]

0.342

6318

\begin{align*} 2 a^{2} y+a y^{2}+\left (3 a +y\right ) y^{\prime }+y^{\prime \prime }&=y^{3} \\ \end{align*}

[[_2nd_order, _missing_x]]

15.367

6319

\begin{align*} y^{\prime \prime }&=f \left (x \right ) y^{2}+y^{3}+y \left (-2 f \left (x \right )^{2}+f^{\prime }\left (x \right )\right )+\left (3 f \left (x \right )-y\right ) y^{\prime } \\ \end{align*}

[NONE]

0.530

6320

\begin{align*} y^{\prime \prime }&=\operatorname {f2} \left (x \right )+\operatorname {f3} \left (x \right ) y+\operatorname {f1} \left (x \right ) y^{2}+y^{3}+\left (3 \operatorname {f1} \left (x \right )-y\right ) y^{\prime } \\ \end{align*}

[NONE]

0.430

6321

\begin{align*} y^{\prime \prime }&=\operatorname {g3} \left (x \right )+\operatorname {g2} \left (x \right ) y+\operatorname {g1} \left (x \right ) y^{2}+\operatorname {g0} \left (x \right ) y^{3}+\left (\operatorname {f1} \left (x \right )+\operatorname {f0} \left (x \right ) y\right ) y^{\prime } \\ \end{align*}

[NONE]

0.556

6322

\begin{align*} y^{\prime \prime }&=y f^{\prime }\left (x \right )+\left (f \left (x \right )-2 y\right ) y^{\prime } \\ \end{align*}

[[_2nd_order, _exact, _nonlinear], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_y_y1], [_2nd_order, _reducible, _mu_xy]]

17.680

6323

\begin{align*} y^{\prime \prime }&=g \left (x \right )+f \left (x \right ) y^{2}+\left (f \left (x \right )-2 y\right ) y^{\prime } \\ \end{align*}

[[_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

0.292

6324

\begin{align*} y^{\prime \prime }&=\operatorname {f3} \left (x \right )+\operatorname {f2} \left (x \right ) y^{2}+\left (\operatorname {f1} \left (x \right )-2 y\right ) y^{\prime } \\ \end{align*}

[NONE]

0.332

6325

\begin{align*} y^{\prime \prime }&=\operatorname {f4} \left (x \right )+\operatorname {f3} \left (x \right ) y+\operatorname {f2} \left (x \right ) y^{2}+\left (\operatorname {f1} \left (x \right )-2 y\right ) y^{\prime } \\ \end{align*}

[NONE]

0.397

6326

\begin{align*} y^{\prime \prime }&=a +4 b^{2} y+3 b y^{2}+3 y^{\prime } y \\ \end{align*}

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

17.253

6327

\begin{align*} 3 y^{\prime } y+y^{\prime \prime }&=f \left (x \right )+g \left (x \right ) y-y^{3} \\ \end{align*}

[NONE]

0.325

6328

\begin{align*} y^{\prime \prime }&=f \left (x \right ) y^{2}-y^{3}+\left (f \left (x \right )-3 y\right ) y^{\prime } \\ \end{align*}

[[_2nd_order, _with_potential_symmetries]]

0.441

6329

\begin{align*} y^{\prime \prime }&=a \left (1+2 y^{\prime } y\right ) \\ \end{align*}

[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

83.409

6330

\begin{align*} b y+a \left (y^{2}-1\right ) y^{\prime }+y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

21.769

6331

\begin{align*} g \left (x , y\right )+f \left (x , y\right ) y^{\prime }+y^{\prime \prime }&=0 \\ \end{align*}

[NONE]

0.256

6332

\begin{align*} y^{\prime \prime }&=2 x +\left (x^{2}-y^{\prime }\right )^{2} \\ \end{align*}

[[_2nd_order, _missing_y], [_2nd_order, _reducible, _mu_xy]]

1.650

6333

\begin{align*} 2 \cot \left (x \right ) y^{\prime }+2 \tan \left (y\right ) {y^{\prime }}^{2}+y^{\prime \prime }&=0 \\ \end{align*}

[_Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

0.904

6334

\begin{align*} y^{\prime \prime }&=a {y^{\prime }}^{2} \\ \end{align*}

[[_2nd_order, _missing_x], _Liouville, [_2nd_order, _reducible, _mu_xy]]

1.224

6335

\begin{align*} y^{\prime \prime }&=a^{2}+b^{2} {y^{\prime }}^{2} \\ \end{align*}

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_xy]]

10.513

6336

\begin{align*} b y+a {y^{\prime }}^{2}+y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

2.832

6337

\begin{align*} b \sin \left (y\right )+a {y^{\prime }}^{2}+y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

16.977

6338

\begin{align*} c y+b y^{\prime }+a {y^{\prime }}^{2}+y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

24.253

6339

\begin{align*} y^{\prime \prime }&={\mathrm e}^{x} {y^{\prime }}^{2} \\ \end{align*}

[[_2nd_order, _missing_y]]

0.598

6340

\begin{align*} f \left (x \right ) y^{\prime }+g \left (x \right ) {y^{\prime }}^{2}+y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _missing_y]]

0.672

6341

\begin{align*} b y+a y {y^{\prime }}^{2}+y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

3.384

6342

\begin{align*} g \left (y\right )+f \left (y\right ) {y^{\prime }}^{2}+y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

3.266

6343

\begin{align*} f \left (x \right ) y^{\prime }+g \left (y\right ) {y^{\prime }}^{2}+y^{\prime \prime }&=0 \\ \end{align*}

[_Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

0.270

6344

\begin{align*} f \left (y\right ) y^{\prime }+g \left (y\right ) {y^{\prime }}^{2}+y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_xy]]

1.655

6345

\begin{align*} h \left (y\right )+f \left (y\right ) y^{\prime }+g \left (y\right ) {y^{\prime }}^{2}+y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

8.072

6346

\begin{align*} y^{\prime }+{y^{\prime }}^{3}+y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

4.592

6347

\begin{align*} y^{\prime \prime }&=\left (a -x \right ) {y^{\prime }}^{3} \\ \end{align*}

[[_2nd_order, _missing_y], [_2nd_order, _reducible, _mu_y_y1]]

1.563

6348

\begin{align*} \left ({\mathrm e}^{2 y}+x \right ) {y^{\prime }}^{3}+y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _with_exponential_symmetries], [_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_y_y1]]

0.429

6349

\begin{align*} 2 y^{\prime }+4 {y^{\prime }}^{3}+y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

4.677

6350

\begin{align*} a {y^{\prime }}^{3}+y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_y_y1]]

2.721

6351

\begin{align*} y^{\prime \prime }&=x {y^{\prime }}^{3} \\ \end{align*}

[[_2nd_order, _missing_y], [_2nd_order, _reducible, _mu_y_y1]]

1.292

6352

\begin{align*} \left (a x +b y\right ) {y^{\prime }}^{3}+y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _with_exponential_symmetries], [_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_y_y1]]

0.487

6353

\begin{align*} a y \left (1+{y^{\prime }}^{2}\right )^{2}+y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

4.869

6354

\begin{align*} y^{\prime \prime }&=a \left (-y+y^{\prime } x \right )^{k} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.547

6355

\begin{align*} g \left (x \right ) y^{\prime }+f \left (x \right ) {y^{\prime }}^{k}+y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _missing_y]]

46.787

6356

\begin{align*} y^{\prime \prime }&=A \,x^{a} y^{b} {y^{\prime }}^{c} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.279

6357

\begin{align*} y^{\prime \prime }&=a \sqrt {1+{y^{\prime }}^{2}} \\ \end{align*}

[[_2nd_order, _missing_x]]

14.285

6358

\begin{align*} y^{\prime \prime }&=a \sqrt {b y^{2}+{y^{\prime }}^{2}} \\ \end{align*}

[[_2nd_order, _missing_x]]

48.875

6359

\begin{align*} y^{\prime \prime }&=a \left (1+{y^{\prime }}^{2}\right )^{{3}/{2}} \\ \end{align*}

[[_2nd_order, _missing_x]]

8.531

6360

\begin{align*} y^{\prime \prime }&=a x \left (1+{y^{\prime }}^{2}\right )^{{3}/{2}} \\ \end{align*}

[[_2nd_order, _missing_y], [_2nd_order, _reducible, _mu_y_y1]]

3.302

6361

\begin{align*} y^{\prime \prime }&=a y \left (1+{y^{\prime }}^{2}\right )^{{3}/{2}} \\ \end{align*}

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

7.179

6362

\begin{align*} y^{\prime \prime }&=a y {\left (1+\left (b -y^{\prime }\right )^{2}\right )}^{{3}/{2}} \\ \end{align*}

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

38.785

6363

\begin{align*} y^{\prime \prime }&=a \left (b +c x +y\right ) \left (1+{y^{\prime }}^{2}\right )^{{3}/{2}} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_y_y1]]

0.653

6364

\begin{align*} y^{3} y^{\prime }+y^{\prime \prime }&=y y^{\prime } \sqrt {y^{4}+4 y^{\prime }} \\ \end{align*}

[[_2nd_order, _missing_x]]

11.571

6365

\begin{align*} y^{\prime \prime }&=f \left (y^{\prime }\right ) \\ \end{align*}

[[_2nd_order, _missing_x]]

0.925

6366

\begin{align*} y^{\prime \prime }&=f \left (a x +b y, y^{\prime }\right ) \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

20.201

6367

\begin{align*} y^{\prime \prime }&=f \left (x , \frac {y^{\prime }}{y}\right ) y \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.164

6368

\begin{align*} y^{\prime \prime }&=x^{-2+n} f \left (y x^{-n}, x^{1-n} y^{\prime }\right ) \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.349

6369

\begin{align*} 2 y^{\prime \prime }&=1+12 y^{2} \\ \end{align*}

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

60.472

6370

\begin{align*} 2 y^{\prime \prime }&=y \left (a -y^{2}\right ) \\ \end{align*}

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

10.632

6371

\begin{align*} 9 {y^{\prime }}^{4}+8 y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

3.326

6372

\begin{align*} a \,{\mathrm e}^{y} x +y^{\prime }+y^{\prime \prime } x&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_x_y1]]

0.349

6373

\begin{align*} x y^{5}+2 y^{\prime }+y^{\prime \prime } x&=0 \\ \end{align*}

[_Emden, [_2nd_order, _with_linear_symmetries]]

0.284

6374

\begin{align*} x y^{n}+2 y^{\prime }+y^{\prime \prime } x&=0 \\ \end{align*}

[_Emden, [_2nd_order, _with_linear_symmetries]]

0.211

6375

\begin{align*} x^{m} y^{n}+2 y^{\prime }+y^{\prime \prime } x&=0 \\ \end{align*}

[[_Emden, _Fowler], [_2nd_order, _with_linear_symmetries]]

0.296

6376

\begin{align*} a \,x^{m} y^{n}+2 y^{\prime }+y^{\prime \prime } x&=0 \\ \end{align*}

[[_Emden, _Fowler], [_2nd_order, _with_linear_symmetries]]

0.280

6377

\begin{align*} b \,{\mathrm e}^{y} x +a y^{\prime }+y^{\prime \prime } x&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.286

6378

\begin{align*} \left (-a \,x^{2}+2\right ) y^{\prime }+y^{\prime \prime } x&=0 \\ \end{align*}

[[_2nd_order, _missing_y]]

0.908

6379

\begin{align*} y^{\prime \prime } x&=\left (1-y\right ) y^{\prime } \\ \end{align*}

[[_2nd_order, _exact, _nonlinear], [_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_xy]]

1.120

6380

\begin{align*} x {y^{\prime }}^{2}+y^{\prime \prime } x&=y^{\prime } \\ \end{align*}

[[_2nd_order, _missing_y], _Liouville, [_2nd_order, _reducible, _mu_xy]]

0.658

6381

\begin{align*} y^{\prime \prime } x&=x {y^{\prime }}^{2}+y^{\prime } \\ \end{align*}

[[_2nd_order, _missing_y], _Liouville, [_2nd_order, _reducible, _mu_xy]]

0.724

6382

\begin{align*} -2 y^{\prime }+2 x {y^{\prime }}^{2}+y^{\prime \prime } x&=0 \\ \end{align*}

[[_2nd_order, _missing_y], _Liouville, [_2nd_order, _reducible, _mu_xy]]

0.621

6383

\begin{align*} y^{\prime \prime } x&=-y^{2}-2 y^{\prime }+x^{2} {y^{\prime }}^{2} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_xy]]

0.404

6384

\begin{align*} 2 y^{\prime }+a \,x^{2} {y^{\prime }}^{2}+y^{\prime \prime } x&=b \\ \end{align*}

[[_2nd_order, _missing_y]]

2.900

6385

\begin{align*} \left (-y+a x y^{\prime }\right )^{2}+y^{\prime \prime } x&=b \\ \end{align*}

[NONE]

0.187

6386

\begin{align*} y^{\prime \prime } x&=y^{\prime }+{y^{\prime }}^{3} \\ \end{align*}

[[_2nd_order, _missing_y], [_2nd_order, _reducible, _mu_y_y1]]

1.853

6387

\begin{align*} y^{\prime \prime } x +2 y^{\prime }&=a \,x^{2 k} {y^{\prime }}^{k} \\ \end{align*}

[[_2nd_order, _missing_y]]

6.157

6388

\begin{align*} y^{\prime }+{y^{\prime }}^{3}+2 y^{\prime \prime } x&=0 \\ \end{align*}

[[_2nd_order, _missing_y], [_2nd_order, _reducible, _mu_y_y1]]

1.668

6389

\begin{align*} a y \left (1-y^{n}\right )+x^{2} y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.321

6390

\begin{align*} a \,{\mathrm e}^{y-1}+x^{2} y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.305

6391

\begin{align*} \left (a +1\right ) x y^{\prime }+x^{2} y^{\prime \prime }&=x^{k} f \left (x^{k} y, k y+y^{\prime } x \right ) \\ \end{align*}

[NONE]

0.297

6392

\begin{align*} {y^{\prime }}^{2}+x^{2} y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _missing_y], [_2nd_order, _reducible, _mu_y_y1]]

0.417

6393

\begin{align*} x^{2} y^{\prime \prime }&=\left (3 x -2 y^{\prime }\right ) y^{\prime } \\ \end{align*}

[[_2nd_order, _missing_y]]

0.426

6394

\begin{align*} 2+4 y^{\prime } x +x^{2} {y^{\prime }}^{2}+x^{2} y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _missing_y], [_2nd_order, _reducible, _mu_xy]]

0.602

6395

\begin{align*} x^{2} y^{\prime \prime }&=6 y-4 y^{2} x^{2}+x^{4} {y^{\prime }}^{2} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_xy]]

0.635

6396

\begin{align*} a \left (-y+y^{\prime } x \right )^{2}+x^{2} y^{\prime \prime }&=b \,x^{2} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.523

6397

\begin{align*} 2 y x +a \,x^{4} {y^{\prime }}^{2}+x^{2} y^{\prime \prime }&=b \\ \end{align*}

[NONE]

0.195

6398

\begin{align*} b x +a y {y^{\prime }}^{2}+x^{2} y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.140

6399

\begin{align*} x^{2} y^{\prime \prime }&=\sqrt {b y^{2}+a \,x^{2} {y^{\prime }}^{2}} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.823

6400

\begin{align*} x^{2} y^{\prime \prime }&=f \left (\frac {x y^{\prime }}{y}\right ) y \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

25.708