2.2.61 Problems 6001 to 6100

Table 2.135: Main lookup table. Sorted sequentially by problem number.

#

ODE

CAS classification

Solved?

Maple

Mma

Sympy

time(sec)

6001

\begin{align*} x^{2} y^{\prime \prime }+3 y^{\prime } x +y&=0 \\ \end{align*}

[[_2nd_order, _exact, _linear, _homogeneous]]

1.017

6002

\begin{align*} x^{2} y^{\prime \prime }+3 y^{\prime } x +y&=x \\ \end{align*}

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

1.408

6003

\begin{align*} x^{2} y^{\prime \prime }+3 y^{\prime } x +y&=a -x +x \ln \left (x \right ) \\ \end{align*}

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

1.876

6004

\begin{align*} x^{2} y^{\prime \prime }-3 y^{\prime } x +4 y&=0 \\ \end{align*}

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

0.814

6005

\begin{align*} x^{2} y^{\prime \prime }-3 y^{\prime } x +4 y&=5 x \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1.204

6006

\begin{align*} -5 y-3 y^{\prime } x +x^{2} y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _exact, _linear, _homogeneous]]

0.833

6007

\begin{align*} -5 y-3 y^{\prime } x +x^{2} y^{\prime \prime }&=\ln \left (x \right ) x^{2} \\ \end{align*}

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

1.333

6008

\begin{align*} x^{2} y^{\prime \prime }+4 y^{\prime } x +2 y&=0 \\ \end{align*}

[[_2nd_order, _exact, _linear, _homogeneous]]

1.295

6009

\begin{align*} x^{2} y^{\prime \prime }+4 y^{\prime } x +2 y&={\mathrm e}^{x} \\ \end{align*}

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

1.970

6010

\begin{align*} x^{2} y^{\prime \prime }+4 y^{\prime } x +2 y&=\ln \left (x +1\right ) \\ \end{align*}

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

2.109

6011

\begin{align*} x^{2} y^{\prime \prime }-4 y^{\prime } x +6 y&=0 \\ \end{align*}

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

1.093

6012

\begin{align*} x^{2} y^{\prime \prime }-4 y^{\prime } x +6 y&=x^{2} \left (x^{2}-1\right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

1.684

6013

\begin{align*} \left (-x^{2}+2\right ) y+4 y^{\prime } x +x^{2} y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.408

6014

\begin{align*} \left (x^{2}+6\right ) y+4 y^{\prime } x +x^{2} y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.520

6015

\begin{align*} 13 y+5 y^{\prime } x +x^{2} y^{\prime \prime }&=0 \\ \end{align*}

[[_Emden, _Fowler]]

1.096

6016

\begin{align*} 16 y-7 y^{\prime } x +x^{2} y^{\prime \prime }&=0 \\ \end{align*}

[[_Emden, _Fowler]]

0.826

6017

\begin{align*} \left (a \left (a +1\right )+b^{2} x^{2}\right ) y-2 a x y^{\prime }+x^{2} y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.799

6018

\begin{align*} \operatorname {a2} y+\operatorname {a1} x y^{\prime }+x^{2} y^{\prime \prime }&=0 \\ \end{align*}

[[_Emden, _Fowler]]

1.398

6019

\begin{align*} \left (\operatorname {b2} x +\operatorname {a2} \right ) y+\operatorname {a1} x y^{\prime }+x^{2} y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.315

6020

\begin{align*} \left (\operatorname {b2} \,x^{2}+\operatorname {a2} \right ) y+\operatorname {a1} x y^{\prime }+x^{2} y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.651

6021

\begin{align*} \left (\operatorname {c2} \,x^{2}+\operatorname {b2} x +\operatorname {a2} \right ) y+\operatorname {a1} x y^{\prime }+x^{2} y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

7.149

6022

\begin{align*} \left (c \,x^{3}+b \right ) y+a x y^{\prime }+x^{2} y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.329

6023

\begin{align*} x^{2} \left (\operatorname {b1} \,x^{2}+\operatorname {a1} \right ) y+a x y^{\prime }+x^{2} y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

8.037

6024

\begin{align*} \left (b +c \,x^{2 k}\right ) y+a x y^{\prime }+x^{2} y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.286

6025

\begin{align*} c y+\left (b x +a \right ) y^{\prime }+x^{2} y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

7.624

6026

\begin{align*} a \left (a +1\right ) y-2 a x y^{\prime }+x^{2} y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.937

6027

\begin{align*} a \left (a +1\right ) y-2 a x y^{\prime }+x^{2} y^{\prime \prime }&={\mathrm e}^{x} x^{2+a} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

1.441

6028

\begin{align*} \left (a \left (a +1\right )+b^{2} x^{2}\right ) y-2 a x y^{\prime }+x^{2} y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.714

6029

\begin{align*} \left (b x +a \right ) y+2 a x y^{\prime }+x^{2} y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.292

6030

\begin{align*} -2 x^{2} y-x^{2} y^{\prime }+x^{2} y^{\prime \prime }&=1+x +2 \ln \left (x \right ) x^{2} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

1.440

6031

\begin{align*} \left (b \,x^{2}+a \right ) y+x^{2} y^{\prime }+x^{2} y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

3.181

6032

\begin{align*} -y-\left (-x^{2}+1\right ) y^{\prime }+x^{2} y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.569

6033

\begin{align*} -\left (1-x \right ) y+x \left (1-x \right ) y^{\prime }+x^{2} y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.595

6034

\begin{align*} x^{2} y^{\prime \prime }-x \left (2+x \right ) y^{\prime }+\left (2+x \right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.487

6035

\begin{align*} x^{2} y^{\prime \prime }-x \left (2+x \right ) y^{\prime }+\left (2+x \right ) y&=x^{3} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.741

6036

\begin{align*} -\left (3 x +2\right ) y+x \left (-x +2\right ) y^{\prime }+x^{2} y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.447

6037

\begin{align*} -y+x \left (x +3\right ) y^{\prime }+x^{2} y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

7.498

6038

\begin{align*} 2 \left (x +1\right ) y-2 x \left (x +1\right ) y^{\prime }+x^{2} y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.631

6039

\begin{align*} -2 y+a \,x^{2} y^{\prime }+x^{2} y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.562

6040

\begin{align*} \left (3 a x +5\right ) y-x \left (a x +5\right ) y^{\prime }+x^{2} y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.530

6041

\begin{align*} \left (\operatorname {c2} \,x^{2}+\operatorname {b2} x +\operatorname {a2} \right ) y+x \left (\operatorname {b1} x +\operatorname {a1} \right ) y^{\prime }+x^{2} y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

11.485

6042

\begin{align*} -\left (-x^{2}+2\right ) y+x^{3} y^{\prime }+x^{2} y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.694

6043

\begin{align*} -\left (x^{2}+1\right ) y+x \left (-x^{2}+1\right ) y^{\prime }+x^{2} y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.845

6044

\begin{align*} \left (4 x^{4}+2 x^{2}+1\right ) y+4 x^{3} y^{\prime }+x^{2} y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.338

6045

\begin{align*} \left (\operatorname {a1} +\operatorname {b1} \,x^{k}+\operatorname {c1} \,x^{2 k}\right ) y+x \left (\operatorname {a0} +\operatorname {b0} \,x^{k}\right ) y^{\prime }+x^{2} y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

8.985

6046

\begin{align*} a y+2 x^{2} \cot \left (x \right ) y^{\prime }+x^{2} y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

2.544

6047

\begin{align*} -\left (a -x \cot \left (x \right )\right ) y+x \left (1+2 x \cot \left (x \right )\right ) y^{\prime }+x^{2} y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

33.819

6048

\begin{align*} a y-2 x^{2} \tan \left (x \right ) y^{\prime }+x^{2} y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

2.538

6049

\begin{align*} -\left (a +x \tan \left (x \right )\right ) y+x \left (1-2 x \tan \left (x \right )\right ) y^{\prime }+x^{2} y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

36.211

6050

\begin{align*} y \left (\operatorname {a2} +\operatorname {b2} \,x^{k}+\operatorname {c2} \,x^{2 k}+\left (-1+\operatorname {a1} +\operatorname {b1} \,x^{k}\right ) f \left (x \right )+f \left (x \right )^{2}+f^{\prime }\left (x \right )\right )+x \left (\operatorname {a1} +\operatorname {b1} \,x^{k}+2 f \left (x \right )\right ) y^{\prime }+x^{2} y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1.352

6051

\begin{align*} -2 y+\left (x^{2}+1\right ) y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _exact, _linear, _homogeneous]]

0.542

6052

\begin{align*} a -y^{\prime } x +\left (x^{2}+1\right ) y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _missing_y]]

0.796

6053

\begin{align*} \left (-x^{2}+1\right ) y^{\prime \prime }+y^{\prime } x&=x \\ \end{align*}

[[_2nd_order, _missing_y]]

0.896

6054

\begin{align*} y-y^{\prime } x +\left (x^{2}+1\right ) y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.700

6055

\begin{align*} -y+y^{\prime } x +\left (-x^{2}+1\right ) y^{\prime \prime }&=0 \\ \end{align*}

[_Gegenbauer]

0.750

6056

\begin{align*} y-y^{\prime } x +\left (-x^{2}+1\right ) y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _exact, _linear, _homogeneous]]

1.663

6057

\begin{align*} -y-y^{\prime } x +\left (-x^{2}+1\right ) y^{\prime \prime }&=0 \\ \end{align*}

[_Gegenbauer, [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

1.236

6058

\begin{align*} -y+y^{\prime } x +\left (-x^{2}+1\right ) y^{\prime \prime }&=x \left (-x^{2}+1\right )^{{3}/{2}} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1.821

6059

\begin{align*} 3 y+y^{\prime } x +\left (-x^{2}+1\right ) y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _exact, _linear, _homogeneous]]

0.596

6060

\begin{align*} \left (x^{2}+1\right ) y^{\prime \prime }+y^{\prime } x -4 y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

0.710

6061

\begin{align*} \left (x^{2}+1\right ) y^{\prime \prime }+y^{\prime } x -4 y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

0.656

6062

\begin{align*} n^{2} y-y^{\prime } x +\left (-x^{2}+1\right ) y^{\prime \prime }&=0 \\ \end{align*}

[_Gegenbauer, [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

1.176

6063

\begin{align*} a^{2} y+y^{\prime } x +\left (x^{2}+1\right ) y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

1.059

6064

\begin{align*} a^{2} y-y^{\prime } x +\left (-x^{2}+1\right ) y^{\prime \prime }&=0 \\ \end{align*}

[_Gegenbauer, [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

1.135

6065

\begin{align*} \left (b \,x^{2}+a \right ) y-y^{\prime } x +\left (-x^{2}+1\right ) y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

33.898

6066

\begin{align*} -2 y^{\prime } x +\left (-x^{2}+1\right ) y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _missing_y]]

0.720

6067

\begin{align*} a -2 y^{\prime } x +\left (-x^{2}+1\right ) y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _missing_y]]

1.146

6068

\begin{align*} \left (x^{2}+1\right ) y^{\prime \prime }+2 y^{\prime } x -2 y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.689

6069

\begin{align*} 2 y-2 y^{\prime } x +\left (x^{2}+1\right ) y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.691

6070

\begin{align*} \left (-x^{2}+1\right ) y^{\prime \prime }+2 y^{\prime } x -2 y&=\left (-x^{2}+1\right )^{2} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.924

6071

\begin{align*} n \left (n +1\right ) y-2 y^{\prime } x +\left (-x^{2}+1\right ) y^{\prime \prime }&=0 \\ \end{align*}

[_Gegenbauer]

93.940

6072

\begin{align*} n \left (n +1\right ) y-2 y^{\prime } x +\left (-x^{2}+1\right ) y^{\prime \prime }&=\frac {2 \left (-1-n \right ) x \operatorname {LegendreP}\left (n , x\right )+2 \left (n +1\right ) \operatorname {LegendreP}\left (n +1, x\right )}{x^{2}-1} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

85.332

6073

\begin{align*} -p \left (1+p \right ) y+2 y^{\prime } x +\left (x^{2}+1\right ) y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

20.084

6074

\begin{align*} p \left (1+p \right ) y-2 y^{\prime } x +\left (-x^{2}+1\right ) y^{\prime \prime }&=0 \\ \end{align*}

[_Gegenbauer]

99.261

6075

\begin{align*} n \left (n +2\right ) y-3 y^{\prime } x +\left (-x^{2}+1\right ) y^{\prime \prime }&=0 \\ \end{align*}

[_Gegenbauer]

0.416

6076

\begin{align*} -a y-3 y^{\prime } x +\left (-x^{2}+1\right ) y^{\prime \prime }&=0 \\ \end{align*}

[_Gegenbauer]

0.581

6077

\begin{align*} \left (x^{2}+1\right ) y^{\prime \prime }+4 y^{\prime } x +2 y&=-2 x +2 \cos \left (x \right ) \\ \end{align*}

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

0.874

6078

\begin{align*} \left (x^{2}+1\right ) y^{\prime \prime }-4 y^{\prime } x +6 y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.328

6079

\begin{align*} -\left (x^{2}+1\right ) y-4 y^{\prime } x +\left (-x^{2}+1\right ) y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.580

6080

\begin{align*} \left (-x^{2}+1\right ) y^{\prime \prime }-6 y^{\prime } x -4 y&=0 \\ \end{align*}

[[_2nd_order, _exact, _linear, _homogeneous]]

0.589

6081

\begin{align*} n \left (1+a +b +n \right ) y+\left (-a +b -\left (2+a +b \right ) x \right ) y^{\prime }+\left (-x^{2}+1\right ) y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

131.240

6082

\begin{align*} p \left (2 k +p \right ) y-\left (1+2 k \right ) x y^{\prime }+\left (-x^{2}+1\right ) y^{\prime \prime }&=0 \\ \end{align*}

[_Gegenbauer]

46.922

6083

\begin{align*} p \left (1+2 k +p \right ) y-2 \left (1+k \right ) x y^{\prime }+\left (-x^{2}+1\right ) y^{\prime \prime }&=0 \\ \end{align*}

[_Gegenbauer]

53.771

6084

\begin{align*} -\left (k -p \right ) \left (1+k +p \right ) y-2 \left (1+k \right ) x y^{\prime }+\left (-x^{2}+1\right ) y^{\prime \prime }&=0 \\ \end{align*}

[_Gegenbauer]

41.379

6085

\begin{align*} \left (-a +1\right ) a y-2 a x y^{\prime }+\left (-x^{2}+1\right ) y^{\prime \prime }&=0 \\ \end{align*}

[_Gegenbauer]

0.790

6086

\begin{align*} -\left (2-a \right ) y+a x y^{\prime }+\left (x^{2}+1\right ) y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _exact, _linear, _homogeneous]]

1.273

6087

\begin{align*} b y+a x y^{\prime }+\left (-x^{2}+1\right ) y^{\prime \prime }&=0 \\ \end{align*}

[_Gegenbauer]

102.343

6088

\begin{align*} \left (\operatorname {c0} \,x^{2}+\operatorname {b0} x +\operatorname {a0} \right ) y+a x y^{\prime }+\left (-x^{2}+1\right ) y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

41.033

6089

\begin{align*} c y+\left (b x +a \right ) y^{\prime }+\left (-x^{2}+1\right ) y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

142.140

6090

\begin{align*} \left (c^{2} x^{2}+b^{2}\right ) y-y^{\prime } x +\left (a^{2}-x^{2}\right ) y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

67.635

6091

\begin{align*} -12 y-8 y^{\prime } x +\left (a^{2}-x^{2}\right ) y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.384

6092

\begin{align*} y+2 y^{\prime }+\left (1-x \right ) x y^{\prime \prime }&=0 \\ \end{align*}

[_Jacobi]

19.978

6093

\begin{align*} 2 y-2 y^{\prime }+\left (1-x \right ) x y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _exact, _linear, _homogeneous]]

0.536

6094

\begin{align*} 6 y+2 y^{\prime }+\left (1-x \right ) x y^{\prime \prime }&=0 \\ \end{align*}

[_Jacobi]

0.290

6095

\begin{align*} 6 y-2 y^{\prime }+\left (1-x \right ) x y^{\prime \prime }&=0 \\ \end{align*}

[_Jacobi]

0.507

6096

\begin{align*} 2 y+3 y^{\prime }+\left (1-x \right ) x y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _exact, _linear, _homogeneous]]

0.598

6097

\begin{align*} \left (1-x \right ) x y^{\prime \prime }-3 y^{\prime }+2 y&=0 \\ \end{align*}

[[_2nd_order, _exact, _linear, _homogeneous]]

0.598

6098

\begin{align*} \left (1-x \right ) x y^{\prime \prime }-3 y^{\prime }+2 y&=x \left (3 x^{3}+1\right ) \\ \end{align*}

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

0.711

6099

\begin{align*} 2 y-a y^{\prime }+\left (1-x \right ) x y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _exact, _linear, _homogeneous]]

1.095

6100

\begin{align*} x \left (x +1\right ) y^{\prime \prime }+\left (1-x \right ) y^{\prime }+y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.515